Illustrations for Section VII. 4

These drawings are cited in the proofs that the utilities network and the complete graph on five vertices cannot be topologically embedded in the plane (or the 2 - sphere).

Figure 1
This is a drawing of the utilities network. Notice that the edge joining \mathbf{A} to \mathbf{W} passes over the edge joining B to G. One goal of Section VII. 4 is to prove mathematically that one cannot move the connecting lines between the vertices so that no edge passes over or under another.

Figure 2
This is a standard topological embedding of a theta space in the plane. Observe that its complement has three components such that the boundary of each component is a union of two edges in the theta space, and different components have different boundaries.

Figure 3
This is the subgraph \mathbf{S} of the utilities network obtained by removing the three edges which have \boldsymbol{e} as an endpoint (the vertex \boldsymbol{e} is also removed from the graph but the other endpoints of the removed edges are in the subgraph). Observe that this graph is homeomorphic to a theta space. Two of the three edges of the theta space are colored in purple, and the third is colored in green; the union of the two purple edges is a simple closed curve \mathbf{K}.

In Figure 3 the vertices \boldsymbol{e} and \boldsymbol{b} lie in different components of the complement of \mathbf{K}, and if this is the case then the picture suggests that a curve joining them must pass through \mathbf{K}. It is possible that \boldsymbol{e} lies in one of the other two components of the complement of \mathbf{S}, but if \boldsymbol{e} lies in the component bounded by the closed curve in \mathbf{S} passing through \boldsymbol{b} and \boldsymbol{c} then the picture suggests that a curve joining \boldsymbol{e} to a must pass through \mathbf{S}, while if \boldsymbol{e} lies in the component bounded by the closed curve in \mathbf{S} passing through \boldsymbol{b} and \boldsymbol{a} then the picture suggests that a curve joining \boldsymbol{e} to \boldsymbol{a} must pass through \mathbf{S}. This is not quite the argument in the formal proof given in the notes, but one can use the results in Section VII. 4 in the notes to write a rigorous proof along these lines.

Figure 5
This is the standard linear embedding of the complete graph on four vertices in the plane

Figure 6
The complete graph on four vertices can be decomposed as a union of two subgraphs, one of which is a simple closed curve and the other of which is a theta space; the intersection of these subgraphs is homeomorphic to a closed interval.

