
Green’s Theorem for multiply connected regions 

 
Simplicial chains are implicit in the standard derivation of Green’s Theorem for closed 

non – simply connected regions in the plane.  For example, consider a region A in the 
plane bounded by concentric squares as in the illustration below.  If we take the norm 

|x | max  on  RRRR
2 
 whose value at  x  =  ( x1, x2 )  is the maximum of |x1 | and  |x2|, then  

A  is the set of all points satisfying  r  <  |x| max  <  s  for a suitable pair of positive real 

numbers  r  and  s.  In particular, it follows that A is a deformation retract of either 

boundary component, and since each of the latter is homeomorphic to S 
1 we see that  

A  is definitely not simply connected. 
 

. 
 

If  F  =  (P, Q)  is a vector field which is defined on an open neighborhood of  A, then 

the appropriate version of Green’s Theorem for the region  A is given as follows: 
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The standard explanation of this in multivariable calculus books is that that Green’s 
Theorem depends upon finding a triangulation as in the drawing.  Specifically, the 
arguments in the calculus books yield Green’s Theorem for each of the triangular 
regions in the decomposition, and if we add up the integrals associated to the various 

regions we obtain the double integral over  A  on one side of the equation and the 
difference of the line integrals over the boundary curves on the other side. 
 



This process of adding up integrals over the pieces can be viewed as a statement about 
simplicial chains for the triangulation in the drawing.  Suppose that we order the vertices 
lexicographically (in simpler language, alphabetically).  Then the counterclockwise line 
integrals over the triangular regions are given by the following table:  

 

Triangular  
Region 

Counterclockwise  
boundary curve 

Vertex 
order 

 abe  ab + be – ae + 

ebf bf – ef – eb – 

bcf bc + cf – bf + 

fcg cg – fg – cf – 

gcd cd + dg – cg + 

gdh dh – gh – dg – 

hda ah – dh – ad – 

eha ae + eh – ah + 
 

 
The third column of the table indicates whether an even or odd permutation of three 
letters is needed to put the vertices of the region into alphabetical order.  This potential 
change of signs is necessary in order to obtain the expressions in the middle columns 
as the boundaries of the various pieces, and from this viewpoint the basic fact about 
decompositions is summarized in the following identity: 
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Here is another explanation of the need for signs.  If  x, y, z are the vertices of a  2 – 

simplex  K , then there is a standard homeomorphism from the simplex ∆∆∆∆ in the plane 

with vertices 0, e1, and e2 to K which sends  0, e1, and e2  to x, y, and z respectively;  

explicitly, the point (s, t ) goes to  (1 – s – t ) x + s y + t z.  When K also lies in the 
coordinate plane, this map has a Jacobian which will be either positive or negative at all 

points.  If C is the counterclockwise boundary of ∆∆∆∆     , then the standard homeomorphism 

maps C to the boundary of K in a counterclockwise sense if the Jacobian is positive and 
in a clockwise sense if the Jacobian is negative.  In the latter case we must do 
something in order to ensure that the boundary curve will be counterclockwise, and we 

do this formally in the simplicial chain group by taking the negative of the simplex K. 
 

All of the preceding goes through for arbitrary closed regions whose boundaries 
are unions of finitely many regular, simple, piecewise smooth curves.  The basic 
idea is to show first that the region can be nicely triangulated as a polygonal region and 
then to prove that Green’s Theorem remains true under suitable changes of variables.  
A typical example appears on the next page. 
 



 
 

( Note:  The triangular region on the left maps to the region whose boundary curves  
are drawn in various non-gray colors.  It is assumed that the coordinate functions  

all have continuous partial derivatives of sufficiently  high order.  One can then  
combine Green’s Theorem  for the region on the left with standard change of  
variables formulas for line integrals and double integrals to prove that Green’s  

Theorem also holds for the region on the right.) 

 
In order to make this discussion rigorous, one needs input from algebraic topology to 

prove that for an arbitrary polyhedral region one has a simplicial  2 – chain whose 
algebraic boundary is given by the geometric boundary curves with the “correct” 
orientations.  However, in this course it is not possible to develop all the tools necessary 
to formulate and prove such a generalization of Green’s Theorem. 


