TOPICS FOR MATHEMATICS 205B, WINTER 2012

$\mathbf{H} = \text{Hatcher}, \, \mathbf{M} = \text{Munkres}$

I. Further properties of covering spaces

- 0. Introduction (**M**, §§51–55, 56; **H**, Ch. 0, Ch. 1 Introduction, §1.1)
- 1. Lifting criterion (**M**, §79; **H**, §§1.1, 1.3)
- 2. Covering space transformations (\mathbf{M} , §§79, 81; \mathbf{H} , §1.3)
- 3. Universal coverings and applications $(\mathbf{M}, \S\$0, 82; \mathbf{H}, \$1.3)$
- $\infty.$ Counterexamples in covering space theory (M, §82; H, §§1.2, 1.3)

II. Computing fundamental groups

- 1. Orbit spaces $(\mathbf{H}, \S 1.3)$
- 2. Amalgamation constructions for groups (M, §§67–69; H, §1.2)
- 3. The Seifert-van Kampen Theorem (M, §70; H, §1.2)
- 4. Examples (**M**, §§59, 71, 72; **H**, §1.2)
- ∞ . Realizing groups as fundamental groups (H, §1.B)

III. Graph complexes

- 1. Basic definitions (M, §83; H, §1.A, Ch. 2 Introduction)
- 2. Maximal trees $(\mathbf{M}, \S84; \mathbf{H}, \S1.\mathbf{A}))$
- 3. Computing fundamental groups (M, §84; H, §1.A))
- 4. Finite coverings and Euler characteristics (M, §§83, 85; H, §1.A)
- ∞ . Infinite graphs (**M**, §§83–85; **H**, §1.B)

IV. Prelude to homology theory

- 1. Algebraic chains for graphs $(\mathbf{H}, \S 1.A)$
- 2. Triangulations and simplicial complexes $(\mathbf{H}, \S 2.1)$
- 3. Chain complexes and exact sequences $(\mathbf{H},\,\S\S2.1{-}2.2)$
- $\infty.$ Homological algebra and simplicial approximation (H, \S 3.1, 3.A, 3.B, 3.F)

V. Simplicial chain complexes

- 1. Simplicial chains and homology (**H**, §§1.A, 2.1)
- 2. Examples and special cases (H, §§2.1, 2.2)
- 3. Relative groups and exactness properties $(\mathbf{H}, \S 2.1)$
- 4. Bootstrap computational techniques $(\mathbf{H}, \S 2.2)$
- ∞ . Invariance of homology (**H**, §2.1)

VI. Axiomatic singular homology

- 0. Motivation (H, Ch. 2 Introduction)
- 1. Primitive data and basic axioms $(\mathbf{H}, \S\S2.1, 2.3)$
- 2. Exactness, homotopy invariance and support properties (H, §2.3)
- 3. Normalization properties (H, §§2.3, 2.A)
- 4. Excision and Mayer-Vietoris sequences (H, §2.3)
- 5. Reduced homology $(\mathbf{H}, \S\S2.1, 2.3)$
- ∞ . Existence and uniqueness theorems (H, §2.3, 3.F)

VII. Some elementary applications

- 1. Consequences of the axioms $(\mathbf{H}, \S\S2.1-2.3, 2.B)$
- 2. Nonretraction and fixed point theorems (H, §2.B; M, §55)
- 3. Separation and invariance theorems (H, §2.B; M, §63)
- 4. Nonplanar graphs (\mathbf{M} , §64)
- 5. Rationalizations of abelian groups $(\mathbf{H}, \S 2.2)$
- 6. Cell decompositions and Euler's Formula (H, Ch. 0, §2.2, Appendix)
- ∞ . Degree theory, Fundamental Theorem of Algebra (H, §§1.1, 2.2)