
Prismatoids and their volumes 
 
 
 
A  convex linear cell  (sometimes also called a convex polytope) is a closed  bounded  

subset of some RRRR
n
 defined by a finite number of linear equations or inequalities.  Note that sets 

defined by finite systems of this type are automatically convex.  Prisms, pyramids (including 
tetrahedra) and cubes are obvious examples, but of course there are also many others including 
regular Platonic solids which are octahedral, dodecahedra and icosahedra. For every such 

object, there is a finite set  E  =  {e1, … }  of extreme points  or  vertices  such that the cell is 

the set of all (finite) convex combinations of the extreme points; in other words, for each x in the 
cell there are scalars  ��  such that ��   �    �,    
 

 � ���   �    	    
and  


  �    � ��� �� . 
 

Such a cell is said to be  n – dimensional if it is not contained in any hyperplane; this is 
equivalent to assuming the set has a nonempty interior.  In some sense the least complicated 

examples of this sort is an  n – simplex, for which the set of vertices consists of  n + 1 points    

{ v1, … , vn }  such that the vectors � � �  (where i  > 0) are linearly independent; if  � �  �  

this corresponds to a triangle, and if  � �  �  it corresponds to a pyramid with a triangular base 
(a tetrahedron).  Further information on simplices and spaces built from them appears on 
pages 15 – 16 of the following online reference: 
 

http://math.ucr.edu/~res/math246A/algtopnotes2009.pdf 
 

A basic theorem on convex sets states that every convex linear cell has a simplicial 

decomposition for which  E  is the set of vertices.  —   Proofs of this statement appear in the 
books by Munkres and Hudson cited below; specific references are Section 7 of Munkres and 
pages 1 – 14 of the book by Hudson.   
 

J. F. P. Hudson. Piecewise Linear Topology (Notes by J. Shaneson and J. A. Lees). 
W. A. Benjamin, New York, 1969. 

 

J. R.  Munkres. Elementary differential topology (Lectures given at MIT, Fall, 1961. 
Revised Edition), Annals of Mathematics Studies No. 54.  Princeton University Press, 
Princeton, 1966.   

 

In this document we are mainly interested in a special class of  3 – dimensional convex linear 

cells in  RRRR
3
  known as prismatoids.  The defining condition for such objects is that all their 

vertices must lie on a pair of parallel planes.  Usually we shall assume that these two planes are 

the  horizontal  x y – plane defined by  � �  �  and the parallel plane defined by  � �  �  for 

some  � � � .   
 

Prisms and pyramids are examples of prismatoids, but the drawing below shows that there are 
also other examples: 
 



 
 

This drawing is taken from pages 274 – 275  of the following textbook: 
 

A. M. Welchons, W. R. Krickenberger and H. R. Pearson.  Solid Geometry.  Ginn & 
Co., Boston, 1959. 

 

Two additional online references with illustrations are given below; the second one has an 
interactive figure that can be rotated. 
 

http://en.wikipedia.org/wiki/Prismatoid 
 

http://mathworld.wolfram.com/Prismatoid.html 

 

 
The main result 

 
The following volume formula was formulated by Ernst Ferdinand August (1795 – 1870; more 
widely known for numerous contributions to physics such as measurement of relative humidity) 
near the middle of the 19th century: 
 

Prismatoid Theorem.   Suppose that  P  is a prismatoid in  3 – space whose vertices lie in the 

two parallel planes  � �  �  and   � �  �.  Then the volume of  P is given by the formula 
 

�  �   ��  ·  �� � ��� �� 

 

where U is the area of the upper convex linear cell obtained by intersecting  P  with the plane � �  �,  L  is the area of the lower convex linear cell obtained by intersecting  P  with the plane  � �  �,  and  M  is the area of the midsection convex linear cell obtained by intersecting  P  

with the plane  � �  �/�. 
 



Steps in the proof.  The main idea is to reduce the proof to the case of a single simplex.  We 
know that  P  has a simplicial decomposition with no extra vertices, so the volume of  P  is equal 
to the volumes of the individual pieces.  Likewise, the areas of the upper, lower and midsection 
cells will be the sums of the corresponding cells for the individual simplices, and therefore the 
general case will follow by adding together the results for the various simplices.  For each 
simplex there are two cases, depending upon how many of the four vertices lie on each of the 
two parallel planes:  Specifically, in the first case one of the planes contains only one vertex and 
the other contains the other three, and in the second case each plane contains exactly two. 

 
The first case 

 
Suppose that we have a simplex such that three vertices lie on the plane  � �  �  and one lies 

on the plane  � �  �, or vice versa.   We shall consider the first of these alternatives; the 

second follows from similar considerations.  As usual, let  h  be the altitude and let  B  be the 
area of the base.   
 

 
 

Standard formulas for pyramid volumes imply that the volume of the simplex equals  B h/3.  

There is no upper face, and the area  M  of the midsection, which is similar to the base with 

similitude ratio ½ , is equal to  B/4.   Therefore the right hand side of the volume formula is 

equal to  
 �

�  ·  �! � ���  �   ��  ·  "! � �#!�$%  �   !��  . 
 

 
The second case 

 
Assume now that each of the two parallel planes contains exactly two vertices.   We shall need 
the following two formulas: 
 



Formula 1.   Suppose that we are given a  3 – simplex  A  in  RRRR
3
  whose vertices are  x1,  x2,  

x3 and  x4.  Then the volume of the simplex  A  is given by the following formula: 
 

V    =    |det ( y2 – y1  y2 – y1  y2 – y1 )|/6  
 

As usual, we assume that the columns of the 3 × 3 matrix in this expression are given by the 
three listed vectors. 
 

Derivation.   Let  T  be the affine transformation on  RRRR
3
  sending  (u, v, w)  to   

 

(1 – u – v – w) x1 +  u x2 +  v x3 +  w x4 . 
 

If  S  is the standard simplex in  RRRR
3
  whose vertices are the origin and the three standard unit  

vectors, then  T  maps  S  to A, and therefore by the usual Change of Variables Theorems the 

volume of  A  is equal to the volume of  S, which is equal to  1/6, times the absolute value of the 

Jacobian of  T, which is just the cofactor of  1/6  in the displayed formula.  Therefore it follows 
that the volume of  A  is given by the displayed expression. 
 

Formula 2.   Suppose that we are given vectors  a, b, c, d  in  RRRR
3
  which (in the given order) are 

the vertices of a parallelogram.  Then the area of the region bounded by this parallelogram is 
given by the following formula:  
 

A   =   | (b – a) × (d – a) | 
 
 

Derivation.   If  θθθθ  denotes the angle between  b – a  and  d – a, then the altitude from  d  to 

the line  ab  has length equal to  | d – a | sin θθθθ . 
 
 

 
 

(Source: http://en.wikipedia.org/wiki/File:Parallelogram_area.svg) 

 
Therefore we have 
 

A   =   | b – a | | d – a | sin θθθθ   =   | (b – a) × (d – a) | . 
 
Proof of the formula in the second case.  Motivated by the drawing below, take the vertices 
to be  
 

x1   =   (y1, h),     x2   =   (y2, h),     x3   =   (y3, 0) ,     x4   =   (y4, 0) 
 

where the  yi  are suitable  2 – dimensional vectors; since the  xi  are not coplanar, it follows 

that  y2 – y1  and  y4 – y3  are linearly independent.  The midsection of the simplex is its 



intersection with the hyperplane  �  �  �/� , and as suggested in the drawing below it is the 
convex hull of the midpoints of the four edges in the simplex. 
 

 
 

Specifically, the vertices of the midsection are given as follows: 
 

&   �   	� � '	 � '� , � �,         (   �   	� � '� � '� , � � 
 

)   �   	� � '� � '� , � �,         *   �   	� � '	 � '� , � � 
 

In particular, it follows that  ( � & �  ) � *  and  * � & �  ) � ( , and therefore  &, (, ), * (in 
the given order) form the vertices of a parallelogram, which means that the midsection is 
bounded by a parallelogram.  Therefore by an earlier formula the area of the midsection is given 
by following expression: 
 

�   �   	� ·  | �'� �'	 , �� , �'� � '� , �� | 
 

If we now let  '�  �   �-�, ��  then we obtain the following formula for the volume of the simplex: 
 

�   �     	  � · . /01 "
-� � -	 -� � -	 -� � -	� � 	 � � 	 � � 	� �� �� % .   

   
We can now use the standard formulas for determinants to rewrite this formula as follows:   



  

�   �     	  � · . /01 "
-� � -	 -� � -� -� � -	� � 	 � � � � � 	� � �� % .   

 

We can now use the determinant formula for cross products to express the right hand side in 
terms of the latter: 
 

�   �     �  � · | �'� � '	� , �'� � '��|   
�      �  � · | ��( � �&, �� , ��* � �&, ��|  � 

  � 
 � · � · | �( � &, �� , �* � &, ��|   �     �  � · � � 

 

Since there are two vertices in the top and bottom planes, it follows that the base areas are both 
zero and therefore in this case we also have   
 

�   �     �  � ·  �� � ��� �� . 
 

General reference for solid geometry 

 
G. B. Halsted.  Rational Geometry: A textbook for the Science of Space.  Based 
on Hilbert's Foundations (Second Edition).  John Wiley and Sons, New York, 1907. 

 
 


