Triangulating the real projective plane

http://www.math.ust.hk/~mamyan/graphic/323 002.gif
In this discussion we shall view the real projective plane as the quotient space of the 2 - disk by the equivalence relation which identifies diametrically opposite points on the boundary. The drawing above represents a minimal triangulation of the real projective plane; the colored arrows represent pairs of edges that are identified under the equivalence relation.

If we rename the vertices $\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}$ as $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively, then twice the $\mathbf{1}-$ cycle $\mathbf{A B}+\mathbf{B C}-\mathbf{A C}$ is the boundary of the following 2 - chain in the standard chain complex for the given triangulation of the real projective plane with the alphabetical ordering of its vertices:

$A B D+B C D-A C E+A B F+B C F-A C D+D E F-B D E-A E F+C D F$

However, there is no $\mathbf{2}$ - chain whose boundary equals $\mathbf{A B}+\mathbf{B C}-\mathbf{A C}$. It is possible to prove this directly from the definition of the boundary map $\boldsymbol{d}_{\mathbf{2}}$ from $\mathbf{2}$ - chains to $\mathbf{1}$ - chains, but later in the course we shall give a more conceptual and less computational proof in the exercises.

