
Realizing RP
n as a subset of some Euclidean space

One way of defining the real projective space RP
n is to say that it is the quotient of Sn by

the equivalence relation x ∼ y ⇐⇒ x = ± y; in particular, this is explained in the solutions to
the Additional Exercises for Section V.1. It follows immediately that RP

n is a compact space,
and one would also like to know that it is Hausdorff. Since the quotient of a metric space is not
necessarily Hausdorff, some effort is needed to prove that RP

n is indeed Hausdorff. The purpose of
this document is to prove the following stronger result:

EMBEDDING THEOREM. For each n ≥ 1 there is some positive integer M such that RP
n

is homeomorphic to a subset of R
M .

We shall derive this fact from the next result.

PROPOSITION. For each n ≥ 2 there is a continuous mapping gn : R
n+1 → R

M (n), where

M(n) is some large positive integer, such that the following hold:

(i) For all u, v ∈ R
n+1 we have gn(u) = gn(v) if and only if u = ± v.

(ii) We also have gn(x) = 0 if and only if x = 0.

Proof that the Proposition implies the Embedding Theorem. Let fn = gn|S
n, and

let pn : Sn → RP
n be the quotient projection. Then fn(x) = fn(−x) implies that fn factors

as a composite hn
opn for some continuous mapping hn : RP

n → RM(n). By Theorem III.1.9 in
gentopnotes2014.pdf, it suffices to prove that hn is 1–1. Suppose we have equivalence classes [x]
and [y] in RP

n such that hn([x]) = hn([y]). By the definition of hn this implies that gn(x) = gn(y),
and by property (i) in the proposition it follows that y = ±x. Since this implies [x] = [y], it follows
that hn is 1–1 as required.

COROLLARY. For all integers n ≥ 1, the space RP
n is homeomorphic to a metric space; in

particular, RP
n is Hausdorff.

Proof of the Proposition. We shall construct the mappings gn recursively. If n = 1 then we
can take gn(x, y) = (x2 − y2, 2xy), which sends z ∈ C ∼= R

2 to the complex number z2. Suppose

now that we have constructed gn−1 : R
n → R

M(n−1). We can then construct

gn : R × R
n−1 ∼= R

n −→ R × R
n × R

M(n−1)

by the formula

gn(t, z) =
(

t2, tz, gn−1(z)
)

∈ R × R
n × R

M(n−1) .

To complete the proof of the proposition, we need to verify that gn satisfies (i) and (ii). We shall
start with the second property. If (t, z) = (0, 0) then one can check directly that gn(0, 0) = (0, 0, 0).
Conversely, if gn(t, z) = (0, 0, 0) then by taking coordinates we see that t2 = 0, tz = 0 and
gn−1(z) = 0. The first equation implies that t = 0, and the induction hypotheses on gn−1 imply
that z = 0; therefore (ii) is satisfied.

We must now verify that gn satisfies property (i). By construction we have gn(t, z) =
gn(−t,−z). Conversely, suppose that gn(t, z) = gn(s, w). Equating coordinates, we see that the
latter implies the equations t2 = s2, tz = sw and gn−1(z) = gn−1(w). The first equation implies
that t = α s where α = ± 1, and the induction hypotheses on gn−1 imply that z = β w where
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β = ± 1. If we can choose α and β such that α = β, then gn will satify property (i), and this will
prove the proposition.

At this point the argument splits into cases depending upon whether or not t = 0 and whether
or not z = 0.

CASE 1: Suppose that t = z = 0. — Then we have gn(t, z) = 0 and we can combine
gn(t, z) = gn(s, w) with the already verified property (ii) to conclude that (s, w) = (0, 0) = (t, z),
and hence we have t = αs and z = αw where α = β = 1.

CASE 2: Suppose that t = 0 but z 6= 0. — The first coordinates of gn(t, z) and gn(s, w) are t2

and s2 respectively, and hence t = 0 and gn(t, z) = gn(s, w) imply that 0 = t2 = s2, so that s = 0.
We know that z = β w where β = ± 1, and since t = s = 0 we trivially have t = β s.

CASE 3: Suppose that z = 0 but t 6= 0. — The third coordinates of gn(t, z) and gn(s, w)
are gn−1(z) = 0 and gn−1(w) respectively, and hence z = 0 and gn(t, z) = gn(s, w) imply that
0 = gn−1(z) = gn−1(w), so that w = 0. Therefore if t = α s where α = ± 1, then we also have
z = α w.

CASE 4: Suppose that both z 6= 0 and t 6= 0. — Then t = α s and z = β w imply that both
s and w are nonzero. In this case the second coordinates of gn(t, z) and gn(s, w) are tz and sw

respectively, and hence gn(t, z) = gn(s, w) implies that tz = sw; as in the first senteence, we know
that all the factors and products in this equation are nonzero. If we combine the second coordinate
equation with the two equations in the preceding sentence, we obtain the identity αβsw = sw, and
since sw is nonzero it follows that αβ = 1. Since both α and β are ± 1, it follows that α = β, so
that t = α s and z = αw.
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