Addendum to Section VIII.2

The fundamental group is very useful for showing that certain pairs of spaces are not homeomorphic.

THEOREM 11. Let X and Y be arcwise connected topological spaces with $p \in X$ and $q \in Y$. If X and Y are homeomorphic, then $\pi_1(X, p)$ is isomorphic to $\pi_1(Y, q)$.

In particular, if the fundamental groups of X and Y are not isomorphic, then X and Y cannot be homeomorphic.

Proof. Suppose that $f: X \to Y$ is a homeomorphism, and let $g = f^{-1}$. Then by the functoriality of induced homomorphisms for fundamental groups we know that $f_*: \pi_1(X, p) \to \pi_1(Y, f(p))$ is an isomorphism whose inverse is $g_*: \pi_1(Y, f(p)) \to \pi_1(X, p)$. By Theorem 6 we know that $\pi_1(Y, f(p))$ is isomorphic to $\pi_1(Y, q)$, and therefore we also have that $\pi_1(X, p)$ is isomorphic to $\pi_1(Y, q)$.