The Seifert – van Kampen Theorem – I

The drawing below is meant to illustrate the first part of the proof of the Seifert – van Kampen Theorem; namely, if $X = U \cup V$ where U, V and $U \cap V$ are arcwise connected, then the images of $\pi_1(U)$ and $\pi_1(V)$ generate $\pi_1(X)$.

The idea of the proof is to split the original closed curve into finitely many arcs such that each lies in U or V; in the drawing, the endpoints of the arcs are the points P and Q_i . One then joins P to each of the endpoints by curves which lie in U, V and $U \cap V$ depending upon which of these sets contains Q_i . Then the original curve is basepoint preserving homotopic to the concatenation of curves of the form $PQ_i + Q_i Q_{i+1} + Q_{i+1}P$. Each of these closed curves lies either in U or in V.