
Comments on the Seifert – van Kampen Theorem

If we are given a topological space X which is the union of two open subsets U and V such that
their intersection is arcwise connected and a base point p ∈ U∩V , the Seifert-van Kampen Theorem
describes π1(X, p) in terms of π1(U, p), π1(V, p) π1(U ∩ V, p) and the maps of the latter into the
first two groups induced by the inclusions U ∩V ⊂ U , U ∩V ⊂ V . Specifically, the images of π1(U)
and π1(V, p) in π1(X, p) generate this group, and the kernel of the associated homomorphism from
the free product π1(U, p) ∗π1(V, p) to π1(X, p) is the normal subgroup which is normally generated
by all elements of the form

i0∗(y) ·
(
i0∗(y)

)−1

where i0 : U ∩ V → V and j0 : U ∩ V → U are the inclusion mappings. One can characterize
this situation in terms of group homomorphisms as follows: The fundamental group of (X, p) is
the most most general group G for which we have homomorphisms α : π1(U, x0) → π1(X,x0). and
β : π1(V, x0) → π1(X,x0) such that β oi0∗ = α oj0∗. More precisely, if i : U → X and j : V → X
denote the inclusion mappings, then given any (G,αβ) as above, there is a unique homomorphism

Φ : π1(X,x0) −→ G

such that α = Φ oi∗ and β = Φ oj∗.

In the language of category theory, one says that the triple (π1(X,x0), i∗, j∗) is the pushout

of the diagram associated to (π1(U ∩ V, x0), i0∗, j0∗); further information on pushouts is given in
pushouts.pdf.

The proof that the images of π1(U, p) and π1(V, p) generate π1(X, p) is relatively easy compared
to the proof that the kernel of the map from π1(U, p)∗π1(V, p) to π1(X) is generated by the elements
described above, so we shall give an alternate proof when X satisfies a condition which holds for
some of the most important examples of topological spaces.

Definition. An arcwise connected, locally arcwise connected topological space X is said to be
locally simply connected if every point has an open neighborhood base of simply connected sets.
Clearly this implies that X is semilocally simply connected and hence has a universal covering
space. Our argument actually goes through if X is semilocally simply connected, but we make the
stronger assumption in order to simplify the discussion.

In the course of our proof we shall need the following property of regular coverings:

LEMMA. Let X be a connected and locally simply connected space, let p : (E, e0) → (B, b0) be
a regular covering space projection, and let G be the associated group of covering transformations
(which is isomorphic to the opposite group of π1(X)). Then p = h oq where q : E → E/G is the
quotient projection and h is a homeomorphism.

Since a universal (simply connected) covering is regular, the result applies to universal cover-
ings.

This follows from the construction of universal coverings in Munkres. We shall give a proof
not based upon the construction at the end of this document.

1



Application to the Seifert-van Kampen Theorem

In the setting described above, let G and H denote the fundamental groups of U and V
respectively, and let Ũ and Ṽ denote their universal coverings. As before, let N be the normal
subgroup of G ∗H which is normally generated by elements of the form

i0∗(y) ·
(
i0∗(y)

)−1

where y ∈ π1(U ∩ V, x0) and i0 : U ∩ V → V , j0 : U ∩ V → U are the inclusion mappings. We are
then interested in the group

Γ = (G ∗H)/N

and since j oi0 = i oj0 we know that there is a canonical homomorphism from Γ to π1(X,x0).
Since the images of G and H generate the fundamental group of X, we know that this canonical
homomorphism is onto. We shall prove that the map is 1–1 by constructing a covering space E of
X whose fundamental group is isomorphic touch that the image of π1(E, e) is equal to the image
of Γ.

Digression. The construction of the desired covering space involves some general concepts
that are also important in other mathematical contexts.

NOTATIONAL CONVENTIONS. 1. If G is a group then G∗ will denote the opposite group
with binary operation g1 ⊗ g2 = g2 · g1, where the latter means the original binary operation on G.

2. If we are given a group L which acts on a space X and a homomorphism j : L → M ,
then we define M ×L X to be the quotient of M × X modulo the equivalence relation defined
by (g, x) ∼ (g · j(h), h−1 · x) for all (g, x) in M × X and h ∈ L. It follows immediately that if
p : E → B is a covering space projection (where E is not necessarily connected) and L acts as
a group of covering space transformations on E, then M ×L E is a not necessarily connected

covering space over B with projection pM sending [g, x] to p(x) for all (g, x). This is often called a
balanced product construction.

This construction has two important properties:

TRANSITIVITY PROPERY. In the setting above, if we are also given a homomorphism
k : M → N , then there is a canonical homeomorphism from N ×M (M ×L X) to N ×L X. If E → B
is a regular covering space and L is the group of covering space transformations on E, then the
canonical homeomorphism is in fact an equivalence of regular covering spaces.

RESTRICTION PROPERY. Suppose that E → B is a covering space projection such that
E is simply connected and L acts on E by covering space transformations. Suppose that A is an
arcwise connected, locally arcwise connected subspace of B which has a simply connected covering
space, and let j∗ : π1(A, b0) → π1(B, b0) be induced by the inclusion of A in B. If EA is the inverse
image of A in E and pA : EA → A is the restricted covering space (which need not be connected),

then there is an equivalence of covering spaces from EA to π1(B, b0)
∗ ×π1(A,b0)∗ Ã, where as usual

Ã → A denotes the universal covering space projection.

Both proofs are straightforward and left as exercises; in each case one needs to use the previ-
ously stated lemma on regular coverings.
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With these concepts at our disposal, we may complete the proof of the “hard” part of the
Seifert-van Kampen Theorem as follows:

Let G ∼= π1(U)∗ and H ∼= π1(V )∗ denote the deck transformation groups for the universal

coverings Ũ and Ṽ respectively, and consider the spaces

UΓ∗ = Γ∗ ×G Ũ , VΓ∗ = Γ∗ ×H Ṽ .

By the Transitivity and Restriction Properties, the restrictions of these covering spaces to U ∪ V
are canonically equivalent to

Γ∗ ×π1(U∩V )∗ (U ∩ V )∼

(where ( )∼ denotes the universal covering space), and if we take the quotient of UΓ∗ q VΓ∗ formed
by identifying points in these two open subsets via the equivalence of covering spaces, we obtain
a space E, a covering space projection E → X, and an action of Γ∗ on E by covering space
transformations. By construction, this action is transitive on the inverse image F of the base point
p; in other words, if e0 ∈ F is the base point of E and e1 ∈ E, then there is a (necessarily unique)
covering transformation T ∈ Γ∗ such that T (e0) = e1.

CLAIM: The space E is arcwise connected.

In fact, it suffices to show that the inverse image of F lies in a single arc component of E, for
if y ∈ E then one has a continuous curve γ joining p(y) ∈ X to the base point of X, and if we take
the unique lifting of γ which starts at y we obtain a curve joining y to a point in F ; if all of F lies
in a single arc component of E, it then follows that every point of E lies in this arc component.

By construction, the points of F are in 1–1 correspondence with the elements of the pushout
group Γ∗, and given two points in F there is a unique element of T ∈ Γ∗ sending the first to the
second.

Let e0 denote some chosen basepoint of E which maps to the basepoint of X. We shall first
check that e0 and T (e0) lie in the same component of E if T lies in the image of the fundamental
group of U or the fundamental group of V ; more correctly, we shall only consider the case where T
comes from the first group, since the proof in the second case follows by systematically replacing
U by V throughout the discussion. Let kU : Ũ → E be the mapping given by the construction of
E, and let u0 denote the base point of Ũ , so that kU maps u0 to e0. Suppose that T (e0) = e0 · g,
where g ∈ Γ∗ comes from g′ ∈ G, and let α be a based closed curve in U representing g ′. If α̃ is the
unique lifting of α starting at u0, then it follows that T (e0) = kU

o α̃(1), which means that T (e0)
and e0 lie in the same arc component of E. If S is an arbitrary covering transformation of E, then
it also follows that S(e0) and S oT (e0) lie in the same arc component of E. As noted before, similar
considerations hold when T (e0) = e0 · h, where h ∈ Γ∗ comes from h′ ∈ H.

Given the conclusions of the preceding paragraph, one can use the fact that the images of
G = π1(U)∗ and H = π1(V )∗ generate Γ∗ to deduce that every point in F lies in the same
component as e0 and hence E is arcwise connected. Specifically, if T ∈ Γ∗ then we may write T
as a composite T = T1 · · · Tk where each Ti is either in the image of G or the image of H; if
Pi denotes the product of the first i factors with P0 equal to the identity, then by the preceding
paragraph we know that Pi(e0) and Pi−1(e0) lie in the same arc component of E. Combining these,
we conclude that T (e0) = Pk(e0) and e0 = P0(e0) lie in the same arc component of E; since every
point in F has the form T (e0) for some T , it follows that all of F lies in the same arc component
of E, and as noted before this implies that E itself must be arcwise connected.
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Since Γ∗ acts as a group of covering transformations on E and it is transitive on F , the results
about the action of π1(E) on F imply that the image J of π1(E, e0) in π1(B, b0) is a normal subgroup
and the quotient group is isomorphic to Γ. In fact, the projection map ∂ : π1(B, b0) → Γ is given
by taking a closed curve γ representing an element g of the fundamental group of B, forming the
unique lifting γ̃ starting at e0, and defining ∂(g) so that γ̃(1) = g · e0. One must use the fact that
J is normal in the fundamental group to prove that ∂ is a homomorphism.

Combining this with previous observations, we obtain the diagram of morphisms displayed
below, in which the square is commutative (all compositions of morphisms between two objects in
this part of the diagram are equal).

π1(U ∩ V ) −−−−−→ π1(U)
y

yJ(U)

π1(V )
J(V )

−−−−−→ Γ
Φ

−−−−−→ π1(X)
∂

−−−−−→ Γ

The map Φ is the homomorphism given by the universal mapping property of the pushout group
Γ. If we can show that ∂ oΦ is the identity, then it will follow that Φ is injective. Since we already
know that Φ is surjective, it will follow that Φ is an isomorphism, and the proof will be complete.

The key point is to prove that the composites

π1(U) −→ Γ −→ π1(X) −→ Γ π1(V ) −→ Γ −→ π1(X) −→ Γ

are just the standard maps J(U) and J(V ) from π1(U) and π1(V ) into the pushout Γ. Since
the identity 1Γ on Γ satisfies 1Γ

oJ(U) = J(U) and 1Γ
oJ(V ) = J(V ), It follows that the identity

and ∂ oΦ agree on the images of J(U) and J(V ). Since these sets generate Γ, it follows that
∂ oΦ = identityΓ, and as noted above this suffices to complete the proof of the Seifert-van Kampen
Theorem.

It will be helpful to let iU∗ and iV ∗ denote the maps of fundamental groups induced by the
inclusions of U and V in X; by construction we have iU∗ = Φ oJ(U) and iV ∗ = Φ oJ(V ).

As before, it suffices to show that ∂ oΦ oJ(U) = J(U), for the argument in the other case will
follow by systematic substitution of V for U throughout. — Let h′ be an element in π1(U), and let
γ be its image in Γ. By construction, the covering space transformation determined by ∂ oΦ(γ) ∈ Γ
sends the base point e0 to e0 · iU∗(h

′) = e0 · Φ(γ). On the other hand, we also know that the

covering space transformation of Ũ associated to h′ sends u0 to u0 ·h
′, and if we apply the mapping

kU from the previous discussion, it follows that the covering space transformation of E associated
to Φ(γ) = iU∗(h

′) sends e0 = kU (u0) to e0 · iU∗(h
′) = e0 · Φ(γ).

The preceding argument shows that ∂ o iU∗ = J(U), and the identity in the first sentence of
the preceding paragraph then follows because iU∗ = J(U) oΦ. As noted above, we have a similar
identity involving V . Taken together, these imply that the restrictions of ∂ oΦ to the images of
J(U) and J(V ) are the identity, and since these images generate Γ it follows that ∂ oΦ must be the
identity, as claimed.

Remark. In fact, the covering space E constructed in the proof is simply connected. This
will follow if we can show that ∂ is an isomorphism, for the latter will imply that the kernel of
∂ — which is isomorphic to the fundamental group of E — must be trivial; to see the assertion
regarding ∂, note that the proof implies that Φ is an isomorphism, and since ∂ oΦ is the identity it
follows that ∂ = Φ−1.
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Appendix: A lemma on regular coverings

We shall now give a proof of the lemma stated at the beginning of this document.

Previous results imply that the group G of covering transformations for the regular covering
p : E → X is isomorphic to π1(X)/(Image p∗) with reversed multiplication, and if e ∈ E is
an arbitrary point such that p(e) = b0 then there is a unique deck transformation T such that
T (e0) = e. Since a deck transformation T satisfies p oT = p, it follows that if y′ = T (y) in E
then p(y) = p(y′), which in turn implies that the covering space projection p : E → B has a
factorization p = h oq, where q is the quotient projection from E to E/G. We need to show that h
is a homeomorphism.

By construction the mapping h is continuous and onto (since p is onto), so we only need to
prove that (i) the mapping h is open, (ii) the mapping h is 1–1.

To see that h is open, let V be open in E/G so that q−1[V ] is open in E. We then have

h[V ] = p
[
q−1[V ]

]

and since p is open it follows that h is also open.

To prove that h is 1–1, suppose that z1, z2 ∈ E/G are such that h(z1) = h(z2); if we choose
ei ∈ E such that q(ei) = zi, then the injectivity of h reduces to checking that q(e1) = q(e2) or
equivalently that there is a deck transformation T such that T (e1) = T (e2). — To see this, first
join e0 to e1 by some curve α. The assumptions imply that p(e1) = p(e2), and therefore there is
a unique lifting β0 of −p oα with initial point e2. By construction we know that β0(1) lies in the
inverse image of {b0}. Since we have a regular covering, there is a unique deck transformation T
such that T (e0) = β0(1).

Now let β = −β0, so that β and T oα are both liftings of p oα starting at e0 and hence their
endpoints are equal. Since β(1) = e2 and T oα(1) = T (e1), it follows that T (e1) = e2, which is
what we need to prove in order to show that h is a homeomorphism.

5


