Mathematics 205B, Winter 2014, Take-Home Assignment

This will be due on Friday, March 7, 2014, at 12:10 P.M. at the beginning class or by prior arrangement in my mailbox or at the front desk of Surge 202 at the same time. If you wish to use some version of T_{EX} in writing up your answers, please feel free to do so. You must show the work behind or reasons for your answers.

1. Suppose that **K** is a connected simplicial complex which is the union of two connected subcomplexes \mathbf{K}_1 and \mathbf{K}_2 such that $\mathbf{K}_1 \cap \mathbf{K}_2$ is star-shaped with respect to the vertex **v** (which we shall assume comes first in the ordering of vertices).

PROVE that

$$H_q(\mathbf{K}) \cong H_q(\mathbf{K}_1) \oplus H_q(\mathbf{K}_2)$$

for all q > 0, and describe the difference between the left and right hand sides if q = 0.

2. Suppose that **K** is a connected simplicial complex which is the union of two connected subcomplexes \mathbf{K}_1 and \mathbf{K}_2 .

PROVE that $H_1(\mathbf{K})$ is generated by the images of $H_1(\mathbf{K}_1)$ and $H_1(\mathbf{K}_2)$ (with respect to the maps induced by inclusion of chain complexes) if and only if $\mathbf{K}_1 \cap \mathbf{K}_2$ is connected.

Note. Half of this result is a partial analog of the van Kampen Theorem for fundamental groups, and the other half is an anlog of a companion result: If in the statement of the van Kampen Theorem one removes the hypothesis that the intersection be arcwise connected, then the conclusion is systematically false; in fact, whenever the intersection is not arcwise connected, then the images of $\pi_1(U)$ and $\pi_1(V)$ generate a proper subgroup of $\pi_1(X)$ with infinite index in the latter.

3. Suppose that we are given a simplex in \mathbb{R}^2 with vertices **a**, **b** and **c**, and identify \mathbb{R}^2 with the *xy*-plane in \mathbb{R}^3 . Let

$$\mathbf{z} = \frac{1}{3} (\mathbf{a} + \mathbf{b} + \mathbf{c})$$

be the barycenter of the simplex, and let $\mathbf{x}_{\pm} \in \mathbb{R}^3$ denote the point $(\mathbf{z}, \pm 1)$. Consider the simplicial complex L_0 which is the union of the six 2-simplices $\mathbf{x}_{\pm} \mathbf{a} \mathbf{b}$, $\mathbf{x}_{\pm} \mathbf{a} \mathbf{c}$ and $\mathbf{x}_{\pm} \mathbf{b} \mathbf{c}$, and suppose that we form the following larger simplicial complexes from \mathbf{L}_0 :

 \mathbf{L}_1 is formed by adding the 2-simplex **abc**.

 \mathbf{L}_2 is formed by adding the 1-simplex $\mathbf{x}_-\mathbf{x}_+$.

COMPUTE the homology groups of \mathbf{L}_i , where i = 0, 1, 2. [*Hints:* The subcomplexes \mathbf{H}_- and \mathbf{H}_+ consisting of all 2-simplices in \mathbf{L}_0 which have \mathbf{x}_- or \mathbf{x}_+ (respectively) as a vertex are star-shaped. What is their intersection?]