Mathematics 205B, Winter 2014, Take-Home Assignment

This will be due on Friday, March 7, 2014, at 12:10 P.M. at the beginning class or by prior arrangement in my mailbox or at the front desk of Surge 202 at the same time. If you wish to use some version of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in writing up your answers, please feel free to do so. You must show the work behind or reasons for your answers.

1. Suppose that \mathbf{K} is a connected simplicial complex which is the union of two connected subcomplexes \mathbf{K}_{1} and \mathbf{K}_{2} such that $\mathbf{K}_{1} \cap \mathbf{K}_{2}$ is star-shaped with respect to the vertex \mathbf{v} (which we shall assume comes first in the ordering of vertices).

PROVE that

$$
H_{q}(\mathbf{K}) \cong H_{q}\left(\mathbf{K}_{1}\right) \oplus H_{q}\left(\mathbf{K}_{2}\right)
$$

for all $q>0$, and describe the difference between the left and right hand sides if $q=0$.
2. Suppose that \mathbf{K} is a connected simplicial complex which is the union of two connected subcomplexes \mathbf{K}_{1} and \mathbf{K}_{2}.

PROVE that $H_{1}(\mathbf{K})$ is generated by the images of $H_{1}\left(\mathbf{K}_{1}\right)$ and $H_{1}\left(\mathbf{K}_{2}\right)$ (with respect to the maps induced by inclusion of chain complexes) if and only if $\mathbf{K}_{1} \cap \mathbf{K}_{2}$ is connected.

Note. Half of this result is a partial analog of the van Kampen Theorem for fundamental groups, and the other half is an anlog of a companion result: If in the statement of the van Kampen Theorem one removes the hypothesis that the intersection be arcwise connected, then the conclusion is systematically false; in fact, whenever the intersection is not arcwise connected, then the images of $\pi_{1}(U)$ and $\pi_{1}(V)$ generate a proper subgroup of $\pi_{1}(X)$ with infinite index in the latter.
3. Suppose that we are given a simplex in \mathbb{R}^{2} with vertices \mathbf{a}, \mathbf{b} and \mathbf{c}, and identify \mathbb{R}^{2} with the $x y$-plane in \mathbb{R}^{3}. Let

$$
\mathbf{z}=\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c})
$$

be the barycenter of the simplex, and let $\mathbf{x}_{ \pm} \in \mathbb{R}^{3}$ denote the point $(\mathbf{z}, \pm 1)$. Consider the simplicial complex L_{0} which is the union of the six 2 -simplices $\mathbf{x}_{ \pm} \mathbf{a b}, \mathbf{x}_{ \pm} \mathbf{a c}$ and $\mathbf{x}_{ \pm} \mathbf{b} \mathbf{c}$, and suppose that we form the following larger simplicial complexes from \mathbf{L}_{0} :
\mathbf{L}_{1} is formed by adding the 2 -simplex abc.
\mathbf{L}_{2} is formed by adding the 1 -simplex $\mathbf{x}_{-} \mathbf{x}_{+}$.
COMPUTE the homology groups of \mathbf{L}_{i}, where $i=0,1,2$. [Hints: The subcomplexes \mathbf{H}_{-}and \mathbf{H}_{+} consisting of all 2-simplices in \mathbf{L}_{0} which have \mathbf{x}_{-}or \mathbf{x}_{+}(respectively) as a vertex are star-shaped. What is their intersection?]

