Mathematics 205B, Winter 2018, Assignment 1

This will be due on Monday, January 29, 2018, at 11:10 A.M. at the beginning class or by prior arrangement in my mailbox or at the front desk of Surge 202 at the same time. If you wish to use some version of T_EX in writing up your answers, please feel free to do so.

You must show the work behind or reasons for your answers.

1. Let X be a space which is Hausdorff, connected and locally arcwise connected, and let $f: (X, x) \to (S^1, 1)$ be a continuous mapping. Prove that f has a square root (a continuous mapping $gX \to S^1$ such that $g(x)^2 = f(x)$, where the squaring operation comes from complex multiplication) if and only if the image of $f_*: \pi_1(X, x) \to \pi_1(S^1, 1) \cong \mathbb{Z}$ is contained in $2 \cdot \mathbb{Z}$. [*Hint:* Recall that the the squaring map q from S^1 to itself is a basepoint preserving covering space projection.]

2. In the lectures there is a classification of arcwise connected Hausdorff covering spaces over a given space. The point of this exercise is to prove a generalization for Hausdorff covering spaces which are not necessarily arcwise connected.

(a) Let B be a space which is Hausdorff, locally arcwise connected and connected, and let $b_0 \in B$. Suppose further that $p: (E, e_0) \to (B, b_0)$ is a covering space projection such that E is Hausdorff (note that it is automatically locally arcwise connected). If E_0 is the arc component of e_0 , prove that $P|E_0$ is also a covering space projection.

(b) Let $p: (E, e_0) \to (B, b_0)$ be as in (a). Prove that E is a union of pairwise disjoint open closed subspaces E_{α} such that each E_{α} is arcwise connected and each restriction $p|E_{\alpha}$ is a covering space projection.

(c) Let $p: (E, e_0) \to (B, b_0)$ be as in (a) once more, and now assume that B is simply connected. Prove that E is homeomorphic to $B \times F$, where F is the fiber $p^{-1}[\{b_0\}]$. [Hint: Why is each restriction $p|E_{\alpha}$ a homeomorphism?]