SIMPLICES AND SIMPLICIAL DECOMPOSITIONS

Barycentric coordinates. In the drawing below, each of the points P, Q, R lies in the plane determined by P₁, P₂, and P₃, and consequently each can be written as a linear combination $w_1P_1 + w_2P_2 + w_3P_3$, where $w_1 + w_2 + w_3 = 1$. For the point P, the barycentric coordinates w_i are all positive, while for the point R the barycentric coordinates are such that $w_1 = 0$ but the other two are positive, and for the point Q the barycentric coordinates are such that w_1 is negative but the other two are positive.

FIGURE 1

(<u>Source:</u> <u>http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Barycentric-</u> <u>Coordinates/Barycentric-Coordinates.html</u>)

Examples of points for which w_2 is positive but the remaining coordinates are negative can also be constructed using this picture; for example, if one takes the midpoint **M** of the segment $[P_1P_3]$, then the point $S = 2P_2 - M$ will have this property (geometrically, P_2 is the midpoint of the segment joining **M** and **S**).

<u>Illustration of a 2 - simplex</u>. We shall use a modified version of Figure 1; the points of the 2 - simplex with vertices P_1 , P_2 , and P_3 consists of the triangle determined by these points and the points which lie inside this triangle (in the usual intuitive sense of the word).</u>

In this picture the points **P** and **R** lie on the simplex $P_1P_2P_3$ because their barycentric coordinates are all nonnegative, but the point **Q** does not because one of its barycentric coordinates is negative.

Note that the (*proper*) *faces* of this simplex are the closed segments P_1P_2 , P_2P_3 , and P_1P_3 joining pairs of vertices as well as the three vertices themselves (and possibly the empty set if we want to talk about an empty face with no vertices).

<u>Simplicial decompositions.</u> It is useful to look at a few spaces given as unions of 2 - simplices, some of which determine simplicial complexes in the sense of the notes and others that do not.

not a simplicial complex FIGURE 3

(Source: http://mathworld.wolfram.com/SimplicialComplex.html)

In the example above the intersection of the 2 - simplices is not a common face. On the other hand, we can split the two simplices into smaller pieces such that we do have a simplicial decomposition.

simplicial complex

FIGURE 4

Here are two more examples; in the second case the simplices determine a simplicial complex and in the first they do not. As in the preceding example, one can subdivide the simplices in the first example to obtain a simplicial decomposition.

<u>**Triangulations.**</u> In the example from page 523 of Marsden and Tromba, the annulus bounded by two circles is split into four isometric pieces as in the drawing on the next page.

FIGURE 6

Each of the four pieces is homeomorphic to a solid rectangle. Since a solid rectangle has a simplicial decomposition into two 2 – simplices, one can use such a decomposition to form a triangulation of the solid annulus.

A closely related way of triangulating the annulus is suggested by the figure below:

FIGURE 8

Similarly, many familiar closed polygonal regions can be triangulated fairly easily. Here is an example for a solid hexagon.

FIGURE 9

And here is a more complicated example of a closed nonconvex polygonal region which can easily be triangulated.

FIGURE 10

<u>**Triangulations of prisms.</u>** The drawings below illustrate the standard decomposition of a 3 - dimensional triangular prism.</u>

If we take x_0 , x_1 , and x_2 to be the vertices of the bottom triangle and y_0 , y_1 , and y_2 to be the vertices of the top triangle, then the decomposition is given as follows:

Since this decomposition may be difficult to visualize, there is another illustration of this decomposition in the file <u>http://math.ucr.edu/~res/math205B-2012/prism-dissection.pdf</u>.