
SOLUTIONS TO PROBLEMS IN

THE WILSON GEOMETRY TEST

January 2009

Here are solutions to the problems in the “infamous” geometry test created by W. Stephen
Wilson of Johns Hopkins University. Here is the WWW link for the test itself:

http://www.math.jhu.edu/∼wsw/GEOM/geometry.pdf
The solutions are done here in terms of vector geometry, sometimes in R

3 and other times in
R

4. The advantage of working in the latter is that the solid regular tetrahedron can be defined
very simply and symmetrically in 4–space as the set of all (x, y, z, w) such that x, y, z, w ≥ 0 and
x + y + z + w = 1/

√
2. Of course, the solid cube can be realized inside R

3 as the set of all (x, y, z)
such that 0 ≤ x, y, z ≤ 1. We shall take the vertices of the tetrahedron T4 to be

A =
1√
2

(1, 0, 0, 0) , B =
1√
2

(0, 1, 0, 0)

C =
1√
2

(0, 0, 1, 0) , D =
1√
2

(0, 0, 0, 1)

and the vertices of the cube C6 will be given as follows:

A = (0, 0, 1) , B = (1, 0, 1), C = (0, 1, 1) , D = (1, 1, 1)

E = (0, 0, 0) , F = (1, 0, 0), G = (0, 1, 0) , H = (1, 1, 0)

Synthetic derivations of the answers to the questions in the test, accompanied by drawings which
illustrate both the synthetic and vector proofs, are available online at the following site:

http://www.math.jhu.edu/∼wsw/GEOM/answers.pdf
The file wswGeometrytest.pdf in this directory contains clickable links for the sites displayed

above.

The vector - geometric solutions

1. Let U = 1

2
(A+B), V = 1

2
(B +C), P = 1

2
(C +D), and Q = 1

2
(D +A). No three of these

points are collinear; one way to show this is to display Q as an affine combination of U, V, P such
that all of the coefficients are nonzero. But direct computation shows that Q = U − V + P . The
latter in turn shows that the four points are coplanar; furthermore, we also have V − U = Q − P
and Q − U = P − V , so that UV ||PQ and QU ||PV . It follows that U, V, Y,Q (in that order) form
the vertices of a parallelogram. Furthermore, since |A|2 = |B|2 = |C|2 = |D|2 = 1

2
and the four

vectors are pairwise orthogonal, it follows that

〈 (U − V ), (V − P ) 〉 =
〈

1

2
(C − A), 1

2
(B − D)

〉

=

1

4
( ·〈C,B〉 − 〈A,B〉 − 〈C,D〉 + 〈A,D〉 )
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and since the vectors A,B,C,D are pairwise orthogonal it follows that the right hand side is equal
to zero, so that UV ⊥ V P ; since we have a parallelogram, this implies the parallelogram must be
a rectangle. To show it is a square, note that

|V − U |2 = | 1
2
(A − C)|2 =

1

4

(

|A|2 − 2(A · C) + |C|2
)

=
1

4

(

1

2
− 0 +

1

2

)

=
1

4

|V − P |2 = | 1

2
(B − D) |2 =

1

4

(

|B|2 − 2(B · D) + |D|2
)

=
1

4

so that U, V, P,Q (in that order) form the vertices of a square whose sides have length 1

2
. The area

of the solid region bounded by this square is then equal to 1

2
· 1

2
= 1

4
.

We shall now explain why the plane of V PQU cuts the solid tetrahedron into two isometric
pieces. First of all, by definition the solid tetrahedron lies on the hyperplane H1 with equation
x + y + z + w = (1/

√
2). Also, the plane containing the points U, V, P,Q is the intersection of H1

with the hyperplane H2 defined by x− y + z−w = 0. Let T be the invertible linear transformation
of R

4 given by
T (x, y, z, w) = (y, z, w, x) .

Then it follows that T maps H2 onto itself, and in fact T also interchanges the two half-spaces K+

and K− defined by the inequalities x−y+z−w > 0 and x−y+z−w < 0 respectively. Furthermore,
it also follows that T maps the original tetrahedron T4 with vertices A,B,C,D into itself because
it maps the set of vertices {A,B,C,D} into itself. Therefore the plane H2 splits the T4 into two
congruent pieces, one of which is T4 ∩ (K+ ∪ H2) and the other of which is T4 ∩ (K− ∪ H2).

2. The given plane contains the point

M =
1

4
(A + B + C + D) =

1√
2

(

1

4
,

1

4
,

1

4
,

1

4

)

and the same is true if we perform the construction of Exercise 1 using the midpoints of but switch
the roles of B and C. If we do this, then we get another square which sits in another plane; namely
the intersection of the hyperplane with equation x + y + z + w = 1/

√
2 with the hyperplane whose

equation is x − z + y − w = 0. One can check directly that the three hyperplanes intersect in a
line, and the intersection of this line with T4 will have to be a closed line segment. To complete
the solution to the exercise, we must find the endpoints and compute the distance between them.

By construction, V is the midpoint of the closed segment [BC] and Q is the midpoint of the
closed segment [AD]. If we switch the roles of B and C but leave A and D untouched, then we
obtain midpoints which we might call U ′, V ′, P ′ and Q′ for the segments [AC], [CB], [BD] and
[DA] respectively. Therefore V = V ′ and Q = Q′, and hence the points V and Q lie on both the
plane Π1 containing U, V, P,Q and the plane Π2 containing U ′, V ′, P ′, Q′.

We claim that the planes Π1 and Π2 are distinct. If they were not, then the set of points
satisfying the equations for Π1

x + y + z + w =
1√
2

, x − y + z − w = 0

will also satisfy the second equation for Π2; namely, x− z + y−w = 0. Therefore all we have to do
is find a point which satisfies the first two equations but not the third one; such a choice is given
by

U =
1

2
√

2
(1, 1, 0, 0) .
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The segment joining V and Q must then be the intersection of the two solid squares in planes
Π1 and Π2. The length of this segment can be computed for the formulas for V and Q in the first
exercise, and it is equal to 1/

√
2.

3. We shall first verify that the 24 possible reorderings of {A,B,C,D} yield exactly three
distinct planes (the problem does not ask for this, but implicitly assumes that there are exactly
three planes). We have already noticed that if we switch B and C but leave A and B alone, the
plane we obtain is the intersection of the hyperplane containing T4 with the hyperplane defined
by the equation x − z + y − w = 0. In fact, no matter how we reorder the four vertices, the plane
we obtain is the intersection of the tetrahedron’s hyperplane with one having an equation of the
form x + uy + vz + tw = 0, where each of u, v, t is ± 1 and exactly one is positive. Since there
are only three possible choices for (u, v, w), it follows that there are at most three planes. Some
straightforward calculations as before show that these three possibilities are indeed distinct.

We have already noted that the center M of the tetrahedron lies on each of the given planes.
To see if there are any other points on all three planes, observe that the common points are given
by a system of four equations in four unknowns:

x + y + z + w =
1√
2

, x − y + z − w = 0

x + y − z + w = 0 , x + y + z − w = 0

Standard methods from linear algebra show that this system has exactly one solution.

4. This is probably the easiest of all the exercises to visualize. We simply take the rectangle
whose vertices are A,E,H,D. By construction we know that d(A,E) = 1, and we also have

d(E,H) = |(0, 0, 0) − (1, 1, 0)|
√

1 + 1 =
√

2

and therefore the area of the solid square is given by d(A,E) · d(E,H) =
√

2.

5. Let U be the midpoint of [BF ], and let V be the midpoint of [CG], so that U = (1, 0, 1

2
)

and V = (1, 1, 1

2
). Then straighforward calculation shows that d(A,U) = d(U,H) = d(H,V ) =

d(V,A) = 1

2

√
5.

In order to verify that we have a rhombus, we need to show that AU is parallel to HV . But
if we compute A − U and H − V , we find that

A − U =

(

−1, 0,
1

2

)

, H − V =

(

1, 0,−1

2

)

which means that the lines AU and HV are indeed parallel.

6. Suppose we are given a rhombus such that the sides all have length a and one of the
vertex angles has measure θ. Then the altitude h is given by a sin θ; it does not matter which vertex
angle we choose, for the measures of the other three vertex angles are either θ or π − θ, and even
in the second case the value of the sine function is the same. For our purposes it is better to write
this in the following form:

h = a
√

1 − cos2 θ

We know that a = 1

2

√
5. Furthermore, the cosine of θ is given by the familiar dot product formula:

cos θ =
(A − U) · (H − U)

|A − U | · |H − U | =
(−1, 0, 1/2) · (0, 1,−1/2)

5/4

−1/4

5/4
= −1

5
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It follows that

sin2 θ = 1 − 1

25
=

24

25

and therefore take square roots and substitute into the formula for h we have

h = a sin θ =

√
5

2
· 24

5
=

√
5

2
· 2

√
6

5
=

√
6√
5

.

7. The vertices of the hexagon are midpoints for six of the edges:

P is the midpoint of the closed segment [AB]. Its coordinates are ( 1

2
, 0, 1).

Q is the midpoint of the closed segment [BD]. Its coordinates are (1, 1

2
, 1).

S is the midpoint of the closed segment [FH]. Its coordinates are (1, 1, 1

2
).

T is the midpoint of the closed segment [HG]. Its coordinates are ( 1

2
, 1, 0).

U is the midpoint of the closed segment [GE]. Its coordinates are (0, 1

2
, 0).

V is the midpoint of the closed segment [EA]. Its coordinates are (0, 0, 1

2
).

It follows immediately that

d(P,Q) = d(Q,S) = d(S, T ) = d(T,U) = d(U, V ) = d(V, P ) =
1√
2

.

If we know that P,Q, S, T, U, V (in that order) form the vertices of a regular hexagon, this answers
the question in the exercise.

To show that the six points do form the vertices of a regular hexagon, it is necessary to show
that the six points are coplanar and that there is some point M on that plane such that

d(M,P ) = d(M,Q) = d(M,S) = d(M,T ) = d(M,U) = d(M,V ) =
1√
2

.

There is a systematic criterion for deciding whether a set of points Pi = (xi, yi, zi) ∈ R
3 is coplanar

— namely, determining whether the dimension of the span of the vectors (xi, yi, zi, 1) ∈ R
4 has

dimension ≤ 3 — and if this is done by row operations then one can read off the equation of a
plane containing the given points, provided such a plane exists. It turns out that the six points all
lie on the plane Π defined by the equation 2y + 2z − 2x = 1. The point M is merely the center of
the cube, with coordinates ( 1

2
, 1

2
, 1

2
); one can check directly that this point also lies on the plane Π.

Furthermore, it turns out that the six difference vectors

P − M , Q − M , S − M , T − M , U − M , V − M

each have exactly one zero coordinate and two coordinates with absolute value 1

2
. This means that

the distances from M to each of P,Q, S, T, U, V are all equal to 1/
√

2, so that we have the following
six equilateral triangles:

∆MPQ , ∆MQS , ∆MST , ∆MTU , ∆MUV , ∆MV P

Before we explain why the points P, Q, S, T, U, V are the vertices of a regular hexagon, we
must understand more precisely what that means. A regular polygon has a central point, and the
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preceding discussion suggests that M should be that point. We should then have that M is the
midpoint of the closed segments [PT ], [QU ] and [SV ], and in fact these can be checked by direct
computation. Furthermore, Q and V should lie on opposite sides of the line containing P , M and
T ; in fact, the midpoint N of [QV ] is given by

(

1

2
,
1

4
,
3

4

)

=
3

4
T +

1

4
P

so that N lies on the line PT . This means that Q and V must lie on opposite sides of PT in the
plane Π1.

Note that the preceding discussion remains valid if we replace Q, P and V by S, T and U
respectively.

Finally, we need to check that Q and S lie on the same side of PT , and similarly U and V lie
on the same side of PT ; it will follow that the side containing the first two points is opposite the
side containing the last two. One way of proving the given statements is to show that the lines SQ
and UV are both parallel to PT . But direct calculuation shows that

S − Q =
1

2
(T − P ) = U − V

and hence the parallelism relations hold. If we combine this with the previous observations, we can
conclude that P, Q, S, T, U, V are the vertices of a regular hexagon.

8. Take the plane which contains the three standard unit vectors, which in our notation are
F = i, G = j and A = k. Then the plane is given by the equation x + y + z = 1. The origin 0 = E
lies on one side because 0+0+0 < 1, while the points B = (1, 0, 1), C = (0, 1, 1), D = (1, 1, 1) and
H = (1, 1, 0) are on the other side because the sums of their respective coordinates are all positive.

In order to finish the problem, we need to find the distance from 0 to this plane. This distance
is given by the length of the vector P such that P is perpendicular to the plane and lies on that
plane. Now the normal direction to P is given by (1, 1, 1), so the point P has the form (t, t, t) such
that t+ t+ t = 1, or t = 1

3
. Therefore we need to compute the distance from the origin to ( 1

3
, 1

3
, 1

3
),

which is equal to
√

1

9
+

1

9
+

1

9
=

√

1

3
.

9. The sum of the volumes of the large and small pieces is equal to the volume of the entire
cube, which is 1. Since the small piece is a pyramid such that one edge is an altitude, its volume
is easy to compute. The volume of the solid plane region bounded by the isosceles right triangle
∆EFG is 1

2
, and therefore we can use the formula

(volume) =
1

3
(base) · (height)

to see that the volume of the small piece is 1

3
· 1

2
· 1 = 1

6
. Therefore the volume of the large piece

is 1 − 1

6
= 5

6
.

10. The idea is to take the invertible linear transformation T on R
3 which permutes { i, j, k }

cyclically, so that T (i) = j, T (j) = k, and T (k) = i. This map will sends the solid cube into itself,
and on vertices it sends E and D to themselves, it permutes {F,G,A} cyclically, and it also
permutes {B,H,C} cyclically.
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