
Comparing the metric and

Zariski Topologies

Let F denote the field R of real numbers or the field C of complex numbers. In the file
math145Anotes07.pdf we defined the Zariski topology on F

n whose closed subsets are the affine

varieties V (S), where S is some subset of the polynomial ring F[t1, · · · , tn] in n indeterminates
with coefficients in F. Specifically, V (S) consists of all points a = (a1, · · · , an) ∈ F

n such that
p(a) = 0 for all p ∈ S. The open subsets for the Zariski topology are then the sets of the form
F

n − V (S), and the arguments in the previously cited notes show that these sets form a topology
on F

n. More generally, if F is an arbitrary field, one can define the Zariski topology similary and
prove that the associated open sets for a topology on F

n.

The main result in this document describes the relationship between the Zariski topology and
the usual metric topology on F

n:

THEOREM 1. Let F = R or C, let TZ denote the Zariski topology on F
n, and let TM denote

the metric topology on F
n. Then TZ is properly contained in TM .

The following result, which is a key step in the proof of Theorem 1, is interesting and useful
in its own right.

THEOREM 2. Let F = R or C.

(i) If p(t1, · · · , tn) is a polynomial form in F[t1, · · · , tn], then V (p) is a closed subset of F
n

with respect to the metric topology. Furthermore, if V (p) contains a nonempty open subset, then

p is the zero polynomial.

(ii) If p(t1, · · · , tn) is a nonzero polynomial form in F[t1, · · · , tn], then the complement

F
n − V (p) of V (p) is an open dense subset of F

n.

Proof. (i) The first conclusion follows because p is continuous, so that the inverse image V (p) of
the closed set {0} ⊂ F

n is a closed set.

We shall prove the second conclusion by induction on the number of indeterminates in the
polynomial. The result is for polynomials in one indeterminate because a nontrivial polynomial
in one variable has only finitely many roots. Assume it is true for polynomials of with n − 1
indeterminates, where n ≥ 2, and write the polynomial in the form

p(t1, · · · , tn) =

d∑

j=0

qj(t1, · · · , tn−1) tjn

where we might as well assume that d > 0 (otherwise we have a polynomial not involving the
indeterminate tn and the conclusion of the proposition follows from the induction hypothesis).

Suppose now that p = 0 on some open subset U , let a = (a1, · · · , an) ∈ U , and choose h > 0
such that the product open set

n∏

i=1

Nh(ai) ⊂ U .
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If (x1, · · · , xn) ∈ U , then by the preceding sentence we have

p(x1, · · · , xn) =

d∑

j=0

qj(x1, · · · , xn−1)xj
n .

Then for each fixed choice of (x1, · · · , xn−1) ∈
∏n−1

i=1
Nh(ai), the polynomial

f(tn) = p(x1, · · · , tn) =

d∑

j=0

qj(x1, · · · , xn−1) tjn

is zero whenever tn ∈ Nh(an), and since the proposition is known for polynomials in one indeter-
minate this polynomial must be zero. Therefore we know that qj(x1, · · · , xn−1) = 0 for all j and
all (x1, · · · , xn−1) ∈

∏n
i=1

Nh(ai). We can now apply the induction hypothesis to conclude that
qj is the zero polynomial for each j, and this in turn implies that p = 0.

(ii) Let U be a nonempty metrically open open subset of F
n. Then by the first part of the

result the open set U is not contained in V (p), which means that U −V (p) is not empty. Since this
is one definition or characterization of a dense subset, the conclusion of (ii) follows.

COROLLARY 3. If bbF = R or C, then every Zariski open set is also open and dense in the

metric topology.

The proof of this corollary requires some algebraic input:

HILBERT BASIS THEOREM FOR F[t1, · · · , tn]. Let F be a field, let F[t1, · · · , tn] denote

the ring of polynomials in n indeterminates, and let J be an ideal in F[t1, · · · , tn]. Then there is

a finite set of polynomials {p1, · · · , pn} ⊂ J such that every polynomial in J can be expressed as

a linear combination ∑

j

aj pj

for some polynomials aj in n indeterminates.

One reference for a proof of the Hilbert Basis Theorem is Hungerford, Algebra, Theorem
VIII.4.9, page 391 (the second example on page 372 shows that F is an example of a noetherian
ring).

Proof of Corollary 3. If p is a polynomial then by continuity we know that F
n − V ({p}) is

open and dense by the theorem. By Additional Exercise 6.5.(ii) in exercises02w14.pdf we know
that an intersection of two open and dense subsets is open and dense in the metric topology, so by
a standard induction argument the same is true for a finite intersection of such sets. Since

V ({p1, · · · , pk}) =
⋂

j

V ({pj})

it follows that the right hand side is open and dense in the metric topology. Therefore, if we can
show that each set V (S) is equal to V (T ) for some finite set T , then the corollary will follow.

Given a commutative ring with unit R and a subset S ⊂ R, let 〈S〉 denote the ideal generated
by S; in other words, 〈S〉 is the set of all finite linear combinations

∑
α bα sα where sα ∈ S and

Bα ∈ R for all α. If R = F[t1, · · · , tn] then it follows immediately that V (S) = V (〈S〉). By the
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Hilbert Basis Theorem an ideal 〈S〉 ⊂ F[t1, · · · , tn] is equal to 〈T 〉 for some finite set T , and by
the preceding paragraph this suffices to complete the proof of the corollary.

Proof of Theorem 1. By Theorem 2 we know that TZ is contained in TM , and that a set which
is open in the Zariski topology is also dense in the metric topology. Therefore a metrically open
subset will not be open in the Zariski topology if it is not dense. There are many such open subsets
of F

n; in particular, if a ∈ F
n and r > 0 then Nr(a) is metrically open but not dense. This shows

that the containment of topologies is proper.

Final remark. The Zariski topology is not metrizable because the intersection of two nonempty
open subsets is nonempty. In contrast, a metrizable space with more than two points always has a
pair of nonempty disjoint subsets; specifically, if x 6= y and r = d(x, y), then Nr/2(x) and Nr/2(y)
are disjoint (see Chapter 11 of Sutherland for more information on this topic).
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