Mathematics 205B, Winter 2021, Examination 2

Answer Key

1. [25 points] Let $P=\Delta_{2} \times I$ denote the standard solid 3-dimensional triangular prism, with ordered vertices $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}$ (bottom) and $\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{2}$ (top); the boundary $\partial\left(\Delta_{2} \times\right.$ $I)=\left(\Delta_{2} \times\{0,1\}\right) \cup\left(\partial \Delta_{2} \times I\right)$ is then a subcomplex of the given simplicial decomposition. Find a chain $A \in C_{2}\left(\partial\left(\Delta_{2} \times I\right)\right.$, decomp, $\left.\omega\right)$ such that A is a linear combination of every 2 -simplex in ∂P, the coefficient of each free generator is ± 1, and $d_{2}(A)=0$.

SOLUTION

The chain is suggested by the drawing on the next page. We want to choose signs so that the boundaries of the individual simplices cancel each other. Since the 2 -chain A has the required properties if and only if $-A$ does, we may assume that the coefficient of one free generator for $C_{2}\left(\partial\left(\Delta_{2} \times I\right)\right.$, decomp, ω) is +1 . We shall stipulate that A be chosen so that the coefficient of the free generator $\mathbf{y}_{0} \mathbf{y}_{1} \mathbf{y}_{2} \in C_{2}$ is +1 .

With this condition, direct computation shows that A must be equal to

$$
\begin{gathered}
\mathbf{y}_{0} \mathbf{y}_{1} \mathbf{y}_{2}+\mathbf{x}_{0} \mathbf{y}_{0} \mathbf{y}_{2}-\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{y}_{2}-\mathbf{x}_{0} \mathbf{y}_{0} \mathbf{y}_{1}- \\
\mathbf{x}_{0} \mathbf{x}_{2} \mathbf{y}_{2}+\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{y}_{2}+\mathbf{x}_{0} \mathbf{x}_{1} \mathbf{y}_{1}-\mathbf{x}_{0} \mathbf{x}_{1} \mathbf{x}_{2}
\end{gathered}
$$

because its boundary is equal to

$$
\begin{gathered}
\mathbf{y}_{1} \mathbf{y}_{2}-\mathbf{y}_{0} \mathbf{y}_{2}+\mathbf{y}_{0} \mathbf{y}_{1}+\mathbf{y}_{0} \mathbf{y}_{2}-\mathbf{x}_{0} \mathbf{y}_{2}+\mathbf{x}_{0} \mathbf{y}_{0}-\mathbf{y}_{1} \mathbf{y}_{2}+\mathbf{x}_{1} \mathbf{y}_{2}-\mathbf{x}_{1} \mathbf{y}_{1}- \\
\mathbf{x}_{0} \mathbf{y}_{0}+\mathbf{x}_{0} \mathbf{y}_{1}-\mathbf{y}_{0} \mathbf{y}_{1}-\mathbf{x}_{0} \mathbf{x}_{2}+\mathbf{x}_{0} \mathbf{y}_{2}-\mathbf{x}_{2} \mathbf{y}_{2}+\mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{y}_{2}+\mathbf{x}_{2} \mathbf{y}_{2}+ \\
\mathbf{x}_{0} \mathbf{x}_{1}-\mathbf{x}_{0} \mathbf{y}_{1}+\mathbf{x}_{1} \mathbf{y}_{1}-\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{x}_{0} \mathbf{x}_{2}-\mathbf{x}_{0} \mathbf{x}_{1}
\end{gathered}
$$

and the 24 terms in this expression cancel in pairs.-

Drawing for Problem 1

2. [25 points] (a) Show that $\left(\mathbb{R}^{2} \times\{0\}\right) \cup(\{0,0) \times \mathbb{R}) \subset \mathbb{R}^{3}$ is not homeomorphic to \mathbb{R}^{2}. [Hint: Look at local propeties at the origin. Any valid method is acceptable.]
(b) Show that the standard inclusion $S^{1} \times S^{1} \subset S^{3}$ is not a retract.

SOLUTION

(a) The simplest way to prove this is to notice that the complement of the origin in $\left.X=\left(\mathbb{R}^{2} \times\{0\}\right) \cup(\{0,0)\} \times \mathbb{R}\right)$ is disconnected. This subspace is the union of the disjoint subsets

$$
\left(\mathbb{R}^{2} \times\{0\}\right)-\{(0,0,0)\} \quad \text { and } \quad\{(0,0)\} \times(\mathbb{R}-\{0\})
$$

We claim that both of these subsets are open in X; this is true because both $\left(\mathbb{R}^{2} \times\{0\}\right)$ and $(\{(0,0)\} \times \mathbb{R})$ are closed subsets of \mathbb{R}^{3} (hence also in $\left.X\right)$ and
(i) $\left(\mathbb{R}^{2} \times\{0\}\right)-\{(0,0,0)\}$ is the relative complement of $\{(0,0)\} \times \mathbb{R}$ in X,
(ii) $\{(0,0)\} \times(\mathbb{R}-\{0\})$ is the relative complement of $\mathbb{R}^{2} \times\{0\}$ in X.

On the other hand, the complement of a point in \mathbb{R}^{2} is always homeomorphic to the connected set $S^{1} \times \mathbb{R}$. Since this does not hold for X, it follows that X and \mathbb{R}^{2} are not homeomorphic..
(b) Pick a base point $p \in S^{1} \times S^{1}$. If the inclusion is a retract then the associated map of fundamental groups $\pi_{1}\left(S^{1} \times S^{1}, p\right) \rightarrow \pi_{1}\left(S^{3}, p\right)$ will be $1-1$. Since the fundamental groups of the spaces are isomorphic to $\mathbb{Z} \times \mathbb{Z}$ and the trivial group, this is not the case. Therefore there cannot be a retraction $\rho: S^{3} \rightarrow S^{1} \times S^{1}$ such that $\rho \mid S^{1} \times S^{1}$ is the identity. -
3. [25 points] Suppose that A is a nonempty subspace of the topological space X, and let $i: A \rightarrow X$ denote the inclusion. Prove that all the maps in homology $i_{*}: H_{q}(A) \rightarrow$ $H_{q}(X)$ are isomorphisms if and only if all of the relative homology groups $H_{q}(X, A)$ are trivial. [Hint: What does it mean to have zero mappings in an exact sequence?]

SOLUTION

We shall use the long exact homology sequence containing the groups $H_{q}(X, A)$, where q denotes an arbitrary integer:

$$
\cdots \quad H_{q}(A) \quad \xrightarrow{i_{*}} \quad H_{q}(X) \quad \xrightarrow{j_{*}} \quad H_{q}(X, A) \quad \xrightarrow{\partial} \quad H_{q-1}(A) \quad \xrightarrow{i_{*}} \quad H_{q-1}(X) \quad \cdots
$$

If $H_{*}(X, A)=0$ in all dimensions, then all of the mappings j_{*} and ∂ must be trivial. Since the kernel of j_{*} equals the image of i_{*} by exactness, it follows that $H_{q}(X)=\operatorname{Ker} j_{*}=$ Image i_{*} and hence the mappings i_{*} are onto. Likewise, since the kernel of i_{*} equals the image of partial by exactness, it follows that $0=\operatorname{Image} \partial=\operatorname{Ker} i_{*}$ and hence the mappings i_{*} are also $1-1$. Combining these, we conclude that the mappings i_{*} are isomorphisms.■

Conversely, assume that all the mappings i_{*} are isomorphisms. By exactness we have $H_{q}(X)=$ Image $i_{*}=\operatorname{Ker} j_{*}$ and $0=\operatorname{Ker} i_{*}=\operatorname{Image} \partial$. Therefore the mappings j_{*} and ∂ are all trivial. We must now show that these imply $H_{*}(X, A)=0$ in all dimensions.

Let $u \in H_{q}(X, A)$ for some q. Then $\partial=0$ implies that $\partial(u)=0$ and hence $u=j_{*}(v)$ for some v, and since $j_{*}=0$ it follows that $u=0$. Therefore $H_{q}(X, A)=0$ for all $q . ■$
4. [25 points] (a) Suppose we are given a subset $A \subset S^{3}$ which is a union of three compact subsets $B_{1} \cup C \cup B_{2}$ where B_{1} and B_{2} are disjoint subsets which are homeomorphic to S^{2} and C is homeomorhic to a closed interval such that each intersection $C \cap B_{i}$ is an endpoint of C. Prove that the complement $S^{3}-A$ has three connected components. [Hint: What is the reduced homology of $S^{3}-\left(B_{i} \cup C\right)$ for $i=1,2$?]
EXTRA CREDIT. [10 points] For each component Ω as above, state a conjecture about which points of A should be limit points of Ω.

SOLUTION

We shall need a few Mayer-Vietoris exact sequences in singular homology:

$$
\cdots \rightarrow \widetilde{H_{q+1}}(U \cup V) \rightarrow \widetilde{H_{q}}(U \cap V) \rightarrow \widetilde{H_{q}}(U) \oplus \widetilde{H_{q}}(V) \rightarrow \widetilde{H_{q}}(U \cup V) \rightarrow \cdots
$$

Following the hint, we shall first apply this to $S^{3}-\left(B_{i} \cup C\right)=\left(S^{3}-B_{i}\right) \cap\left(S^{3}-C\right)$ where $i=1,2$. Specificially, let $U_{i}=S^{3}-B_{i}$ and $V=S^{3}-C$, and let $B_{i} \cap C=\left\{p_{i}\right\}$, so that $U_{i} \cup V=S^{3}-\left\{p_{i}\right\}$. Then the reduced homology groups of V and $U_{i} \cup V$ are trivial, the first by a theorem in the notes and the second because $U \cup V=S^{3}-\{p\} \cong$ \mathbb{R}^{3}. Therefore the exact Mayer-Vietoris sequence implies that the inclusion map induces homology isormorphisms

$$
\widetilde{H_{*}}\left(U_{i} \cap V=S^{3}-\left(B_{i} \cup C\right)\right) \longrightarrow \widetilde{H_{*}}\left(U_{i}\right)
$$

Next, consider the Mayer-Vietoris sequence for U_{1} and U_{2}; in this case $U_{1} \cap U_{2}=S^{3}-A$ and $U_{1} \cup U_{2}=V$. In this case the exact Mayer-Vietoris sequence and the triviality of $\widetilde{H_{*}}\left(U_{1} \cup U_{2}=\left(S^{3}-C\right)\right)$ imply that the inclusion maps induce isomorphisms

$$
\widetilde{H_{q}}\left(U_{1} \cap U_{2}\right) \rightarrow \widetilde{H_{q}}\left(U_{1}\right) \oplus \widetilde{H_{q}}\left(U_{2}\right)
$$

The right hand side is trivial if $q \neq 0$ and isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$ if $=0$. Therefore

$$
H_{0}\left(S^{3}-A=\left(U_{1} \cup U_{2}\right)\right) \cong \mathbb{Z}^{3}
$$

which means that $S^{3}-A$ has exactly three (connected or arcwise) components.

A drawing for this problem and a discussion of the extra credit question appear on the next page.

Drawing for Problem 4

SOLUTION TO EXTRA CREDIT QUESTION

The drawing suggests that the three components of the complement $S^{3}-A$ have the following frontiers:
(i) The frontier of one component is B_{1}, and the frontier of a second component is B_{2}.
(ii) The frontier of the third component is equal to A. ■
5. [25 points] Let U and V be (arcwise) connected open subsets of \mathbb{R}^{n} such that $U \cap V$ is a nonempty convex set and $\pi_{1}(U \cup V)$ is finite. Prove that at least one of U and V must be simply connected. [Hint: What is the contrapositive?]

SOLUTION

The contrapositive statement is that if both U and V are not simply connected then $\pi_{1}(U \cup V)$ is infinite. We know that $U \cap V$ is simply connected, so by Van Kampen's Theorem we also know that $p i_{1}(U \cup V)$ is a free product of $\pi_{1}(U)$ and $\pi_{1}(V)$. Therefore the proof of the contrapositive reduces to showing that if G and H are nontrivial groups, then the free product $G * H$ is infinite. Let $i_{G}: G \rightarrow G * H$ and $i_{H}: H \rightarrow G * H$ be the images of the two groups in their free product.

To prove the latter, let $1 \neq g \in G$ and $1 \neq h \in H$. Then we know that the element $i_{G}(g) \cdot i_{H}(h) \in G * H$ has infinite order because every nontrivial element in the free product is a monomial in which the images of nontrivial elements in the images of i_{G} and i_{H} always appear in an alternating pattern.■

