Justifying the answer to the Extra Credit for Problem 4 in Examination 2

Recall the setting: We are given a subset $A \subset S^{3}$ which is a union of three compact subsets $B_{1} \cup C \cup B_{2}$ where B_{1} and B_{2} are disjoint subsets which are homeomorphic to S^{2} and C is homeomorhic to a closed interval such that each intersection $C \cap B_{i}$ is an endpoint of C. The solution to the main problem shows that the complement $S^{3}-A$ has three connected components.

The extra credit problem is to state a conjecture about which points of A should be limit points of Ω for each component Ω as above, and the correct answer is that the three components of the complement $S^{3}-A$ have the following frontiers:
(i) The frontier of one component is B_{1}, and the frontier of a second component is B_{2}.
(ii) The frontier of the third component is equal to A.

Proof of the assertion. The first step is to analyze the complement of $B_{1} \cup B_{2}$, and we shall do this using the Jordan-Brouwer Separation Theorem for $S^{3}-B_{1}$ and $S^{3}-B_{2}$. The latter results imply that both $S^{3}-B_{1}$ and $S^{3}-B_{2}$ have two components:

$$
S^{3}-B_{1}=U_{1} \cup V_{1}, \quad S^{3}-B_{2}=U_{2} \cup V_{2}
$$

Since $B_{1} \subset S^{3}-B_{2}=U_{2} \cup V_{2}$ and each of B_{1}, U_{2}, V_{2} is connected, we know that either $B_{1} \subset U_{2}$ or $B_{1} \subset V_{2}$ (but not both). Similarly, we know that either $B_{2} \subset U_{1}$ or $B_{2} \subset V_{1}$ (but not both). Without loss of generality, we may assume that the components of $S^{3}-B_{1}$ and $S^{3}-B_{2}$ are labeled so that $B_{2} \subset V_{1}$ and $B_{1} \subset V_{2}$.

CLAIM 1: We also have $U_{2} \subset V_{1}$ and $U_{1} \subset V_{2}$.

If we can prove the first inclusion, the second one follows by switching X_{1} and X_{2} for $X=B, U, V$. Since every point $x \in B_{2}$ is a limit point of both U_{2} and V_{2}, if we take an open neighborhood N of x which s contained in V_{1} then $N \cap U_{2} \neq \emptyset$; by local connectedness we may assume that N is (arcwise) connected. By assumption $x \in V_{1}$, and therefore the set $V_{1} \cup B_{2} \cup U_{2}$ is a connected subset of $S^{3}-B_{1}$. But V_{1} is a maximal connected subset of the latter and therefore it follows that $U_{2} \subset V_{1}$.

CLAIM 2: The connected components of $S^{3}-\left(B_{1} \cup B_{2}\right)$ are given by U_{1}, U_{2} and $V_{1} \cap V_{2}$. Furthermore, the frontier of $V_{1} \cap V_{2}$ is equal to $B_{1} \cup B_{2}$.

We have two representations of S^{3} as a union of pairwise disjoint subsets:

$$
S^{3}=U_{1} \cup B_{1} \cup V_{1}, \quad S^{3}=U_{2} \cup B_{2} \cup V_{2}
$$

If we take the intersections of the expressions on the right hand sides of these identities, we obtain a desription of S^{3} as a union of 9 pairwise disjoint subsets in which many of the terms simplify, and this yields the following description of S^{3} as a union of pairwise disjoint subsets:

$$
S^{3}=U_{1} \cup B_{1} \cup\left(V_{1} \cap V_{2}\right) \cup B_{2} \cup U_{2}
$$

By the first part of the solution to Problem 4, we know that $S^{3}-\left(B_{1} \cup B_{2}\right)$ has 3 components, and we also know that both U_{1} and U_{2} are connected open and closed subsets of $S^{3}-\left(B_{1} \cup B_{2}\right)$ (note that the closure of U_{i} in S^{3} is just $\left.U_{i} \cup B_{i}\right)$. It follows that U_{1}, U_{2}
and the open and closed subset $V_{1} \cap V_{2} \subset S^{3}-\left(B_{1} \cup B_{2}\right)$ must be the components of the latter.

To complete the proof of the claim, we must show that the frontier of $V_{1} \cap V_{2}$ in S^{3} is equal to $B_{1} \cup B_{2}$. The displayed decomposition of S^{3} as a union of 5 pairwise disjoint subsets implies that the frontier is contained in $B_{1} \cup B_{2}$, and as before it will suffice to show that every point of B_{1} is a limit point of $V_{1} \cap V_{2}$ (the other case will follow by switching the roles of 1 and 2). Let $x \in B_{1}$ and let W be an open neighborhood of x in S^{3}. Then $W \cap V_{2}$ is also an open neighborhood of x since $B_{1} \subset V_{2}$, and therefore by the Jordan-Brouwer Separation Theorem there is a point $y \neq x$ in $W \cap V_{2} \cap V_{1}$, so that x is a limit point of $V_{1} \cap V_{2}$ as desired.

CLAIM 3: If $C \subset A$ is the curve described above then $C-\{p, q\}$ is contained in $V_{1} \cap V_{2}$. Furthermore, if $U_{3}=\left(V_{1} \cap V_{2}\right)-C$, then U_{3} is connected and every point of A is a limit point of U_{3}.

The set $C-\{p, q\}$ is a connected subset which is contained in $S^{3}-\left(B_{1} \cup B_{2}\right)$, so it is contained in exactly one of U_{1}, U_{2} and $V_{1} \cap V_{2}$. Furthermore, the compact set C is the closure of $C-\{p, q\}$ because p and q are limit points of the latter. If $C-\{p, q\} \subset U_{1}$, then the both limit points p and q must belong to the closure of U_{1}, which by the JordanBrouwer Separation Theorem is equal to $U_{1} \cup B_{1}$. This is impossible because one of $\{p, q\}$ is contained in B_{1} and the other is contained in B_{2}. Similarly, we cannot have $C-\{p, q\} \subset U_{2}$, and hence the only remaining possibility is $C-\{p, q\} \subset V_{1} \cap V_{2}$.

Next, let $B_{i}^{*}=B_{i} \cup C$ where $i=1,2$, so that $A=B_{1}^{*} \cup B_{2}^{*}$ and $C=B_{1}^{*} \cap B_{2}^{*}$. If we now write $B=B_{1} \cup B_{2}$, then we have the following commutative diagram whose rows are reduced Mayer-Vietoris exact sequences:

$$
\left.\begin{array}{cccccc}
0=\widetilde{H}_{1}\left(S^{3}-C\right) & \rightarrow & \widetilde{H}_{0}\left(S^{3}-A\right) & \rightarrow & \bigoplus_{i=1}^{2} \widetilde{H}_{0}\left(S^{3}-B_{i}^{*}\right) & \rightarrow
\end{array}\right) \widetilde{H}_{0}\left(S^{3}-C\right)=0
$$

In this digram we know that the horizontal maps in the middle are isomorphisms by exactness, and we also know that all the vertical maps are isomorphisms except possibly
$\widetilde{H}_{0}\left(S^{3}-A\right) \rightarrow \widetilde{H}_{0}\left(S^{3}-B\right)$. By the commutativity of the diagram it follows that the latter map must also be an isomorphism. This means that $U_{3}=\left(V_{1} \cap V_{2}\right)-C$ is also a connected (open) subset of $S^{3}-C$ and hence is one of the latter's connected components.

Finally, we need to show that every point of A is a limit point of U_{3}. The crucial step is to show that the relatively closed subset $C-\{p, q\} \subset V_{1} \cap V_{2}$ is nowhere dense; in other words, its interior is empty.

Assume that some point $z \in C-\{p, q\}$ is in the interior of $V_{1} \cap V_{2}$. Since $C-\{p, q\}$ is homeomorphic to $(0,1)$, its local homology at z must be \mathbb{Z} in dimension 1 and zero otherwise. On the other hand, since z lies in the interior of $C-\{p, q\}$, its local homology in the latter is equal to its local homology in U_{3}. Now the local homology in the latter is \mathbb{Z} in dimension 3 and zero otherwise, so we have a contradiction. The source of the contradiction is our assumption that z lies in the interior of $C-\{p, q\}$, and hence it follows that the interior of the latter in U_{3} must be empty. Therefore $C-\{p, q\}$ is nowhere dense in $V_{1} \cap V_{2}$ and hence every point of $C-\{p, q\}$ is a limit point of U_{3}.

To conclude the argument, we must also verify that every point of $B_{1} \cup B_{2}$ is a limit point of U_{3}. Recall that the second claim implies that every point of $B_{1} \cup B_{2}$ is a limit point of $V_{1} \cap V_{2}$, and by definition we have $U_{3}=\left(V_{1} \cap V_{2}\right)-C$. Suppose now that $x \in B_{1}$ and W is an open neighborhood of x in S^{3}. By the second claim there is a point $y \in W \cap\left(V_{1} \cap V_{2}\right)$ (since the intersection is disjoint from B_{1} we know that $y \neq x$. If $y \notin C-\{p, q\}$ we are done, but if $y \in C-\{p, q\}$ then by the preceding paragraph we know that there is a point $z \neq y$ such that $z \in W \cap\left(V_{1} \cap V_{2}\right)-C=W \cap U_{3}$; as before, since $x \notin U_{3}$ it also follows that $z \neq x$. Therefore x is a limit point of U_{3}, and hence every point of B_{1} is a limit point of U_{3}. If we replace B_{1} with B_{2} in this argument, we also see that every point of B_{2} is a limit point of U_{3}.

Combining these observations, we see that every point of $A=B_{1} \cup C \cup B_{2}$ is a limit point of U_{3}.t

