
Justifying the answer to the Extra Credit for

Problem 4 in Examination 2

Recall the setting: We are given a subset A ⊂ S3 which is a union of three compact
subsets B1 ∪ C ∪ B2 where B1 and B2 are disjoint subsets which are homeomorphic to
S2 and C is homeomorhic to a closed interval such that each intersection C ∩ Bi is an
endpoint of C. The solution to the main problem shows that the complement S3 −A has
three connected components.

The extra credit problem is to state a conjecture about which points of A should be
limit points of Ω for each component Ω as above, and the correct answer is that the three
components of the complement S3 −A have the following frontiers:

(i) The frontier of one component is B1, and the frontier of a second component is
B2.

(ii) The frontier of the third component is equal to A.

Proof of the assertion. The first step is to analyze the complement of B1 ∪ B2, and
we shall do this using the Jordan-Brouwer Separation Theorem for S3 −B1 and S3 −B2.
The latter results imply that both S3 −B1 and S3 −B2 have two components:

S3 −B1 = U1 ∪ V1 , S3 −B2 = U2 ∪ V2

Since B1 ⊂ S3 − B2 = U2 ∪ V2 and each of B1, U2, V2 is connected, we know that either
B1 ⊂ U2 or B1 ⊂ V2 (but not both). Similarly, we know that either B2 ⊂ U1 or B2 ⊂ V1

(but not both). Without loss of generality, we may assume that the components of S3−B1

and S3 −B2 are labeled so that B2 ⊂ V1 and B1 ⊂ V2.
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CLAIM 1: We also have U2 ⊂ V1 and U1 ⊂ V2.

If we can prove the first inclusion, the second one follows by switching X1 and X2 for
X = B,U, V . Since every point x ∈ B2 is a limit point of both U2 and V2, if we take an
open neighborhood N of x which s contained in V1 then N∩U2 6= ∅; by local connectedness
we may assume that N is (arcwise) connected. By assumption x ∈ V1, and therefore the
set V1 ∪B2 ∪ U2 is a connected subset of S3 −B1. But V1 is a maximal connected subset
of the latter and therefore it follows that U2 ⊂ V1.

CLAIM 2: The connected components of S3 − (B1 ∪ B2) are given by U1, U2 and
V1 ∩ V2. Furthermore, the frontier of V1 ∩ V2 is equal to B1 ∪B2.

We have two representations of S3 as a union of pairwise disjoint subsets:

S3 = U1 ∪ B1 ∪ V1 , S3 = U2 ∪ B2 ∪ V2

If we take the intersections of the expressions on the right hand sides of these identities,
we obtain a desription of S3 as a union of 9 pairwise disjoint subsets in which many of
the terms simplify, and this yields the following description of S3 as a union of pairwise
disjoint subsets:

S3 = U1 ∪ B1 ∪ (V1 ∩ V2) ∪ B2 ∪ U2

By the first part of the solution to Problem 4, we know that S3 − (B1 ∪ B2) has 3 com-
ponents, and we also know that both U1 and U2 are connected open and closed subsets of
S3 − (B1 ∪ B2) (note that the closure of Ui in S3 is just Ui ∪ Bi). It follows that U1, U2
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and the open and closed subset V1 ∩ V2 ⊂ S3 − (B1 ∪B2) must be the components of the
latter.

To complete the proof of the claim, we must show that the frontier of V1 ∩ V2 in S3

is equal to B1 ∪ B2. The displayed decomposition of S3 as a union of 5 pairwise disjoint
subsets implies that the frontier is contained in B1∪B2, and as before it will suffice to show
that every point of B1 is a limit point of V1∩V2 (the other case will follow by switching the
roles of 1 and 2). Let x ∈ B1 and let W be an open neighborhood of x in S3. Then W ∩V2

is also an open neighborhood of x since B1 ⊂ V2, and therefore by the Jordan-Brouwer
Separation Theorem there is a point y 6= x in W ∩ V2 ∩ V1, so that x is a limit point of
V1 ∩ V2 as desired.

CLAIM 3: If C ⊂ A is the curve described above then C − {p, q} is contained in
V1 ∩ V2. Furthermore, if U3 = (V1 ∩ V2)−C, then U3 is connected and every point of A is
a limit point of U3.

The set C − {p, q} is a connected subset which is contained in S3 − (B1 ∪ B2), so it
is contained in exactly one of U1, U2 and V1 ∩ V2. Furthermore, the compact set C is the
closure of C − {p, q} because p and q are limit points of the latter. If C − {p, q} ⊂ U1,
then the both limit points p and q must belong to the closure of U1, which by the Jordan-
Brouwer Separation Theorem is equal to U1∪B1. This is impossible because one of {p, q} is
contained in B1 and the other is contained in B2. Similarly, we cannot have C−{p, q} ⊂ U2,
and hence the only remaining possibility is C − {p, q} ⊂ V1 ∩ V2.

Next, let B∗
i = Bi ∪ C where i = 1, 2, so that A = B∗

1 ∪ B∗
2 and C = B∗

1 ∩ B∗
2 . If we

now write B = B1 ∪B2, then we have the following commutative diagram whose rows are
reduced Mayer-Vietoris exact sequences:

0 = H̃1(S3 − C) → H̃0(S3 −A) →
⊕2

i=1 H̃0(S3 −B∗
i ) → H̃0(S3 − C) = 0

↓ ↓ ↓ ↓

0 = H̃0(S3) → H̃0(S3 −B) →
⊕2

i=1 H̃0(S3 −Bi) → H̃0(S3) = 0

In this digram we know that the horizontal maps in the middle are isomorphisms by
exactness, and we also know that all the vertical maps are isomorphisms except possibly
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H̃0(S3−A)→ H̃0(S3−B). By the commutativity of the diagram it follows that the latter
map must also be an isomorphism. This means that U3 = (V1∩V2)−C is also a connected
(open) subset of S3 − C and hence is one of the latter’s connected components.

Finally, we need to show that every point of A is a limit point of U3. The crucial step
is to show that the relatively closed subset C −{p, q} ⊂ V1 ∩ V2 is nowhere dense; in other
words, its interior is empty.

Assume that some point z ∈ C − {p, q} is in the interior of V1 ∩ V2. Since C − {p, q}
is homeomorphic to (0, 1), its local homology at z must be Z in dimension 1 and zero
otherwise. On the other hand, since z lies in the interior of C − {p, q}, its local homology
in the latter is equal to its local homology in U3. Now the local homology in the latter
is Z in dimension 3 and zero otherwise, so we have a contradiction. The source of the
contradiction is our assumption that z lies in the interior of C−{p, q}, and hence it follows
that the interior of the latter in U3 must be empty. Therefore C −{p, q} is nowhere dense
in V1 ∩ V2 and hence every point of C − {p, q} is a limit point of U3.

To conclude the argument, we must also verify that every point of B1 ∪B2 is a limit
point of U3. Recall that the second claim implies that every point of B1∪B2 is a limit point
of V1∩V2, and by definition we have U3 = (V1∩V2)−C. Suppose now that x ∈ B1 and W
is an open neighborhood of x in S3. By the second claim there is a point y ∈W ∩ (V1∩V2)
(since the intersection is disjoint from B1 we know that y 6= x. If y 6∈ C − {p, q} we are
done, but if y ∈ C −{p, q} then by the preceding paragraph we know that there is a point
z 6= y such that z ∈ W ∩ (V1 ∩ V2) − C = W ∩ U3; as before, since x 6∈ U3 it also follows
that z 6= x. Therefore x is a limit point of U3, and hence every point of B1 is a limit point
of U3. If we replace B1 with B2 in this argument, we also see that every point of B2 is a
limit point of U3.

Combining these observations, we see that every point of A = B1 ∪ C ∪B2 is a limit
point of U3.
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