NAME:

Mathematics 205B, Winter 2018, Examination 1

Work all questions, and unless indicated otherwise give reasons for your answers. The point values for individual problems are indicated in brackets.

#	SCORE
1	
2	
3	
4	
TOTAL	

1. [35 points] These questions involve the pentagram (5–pointed star) graph on the next page.

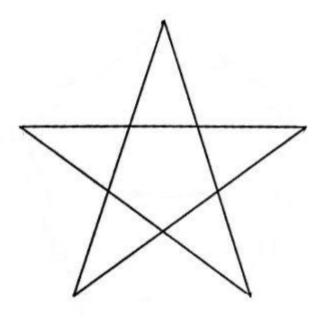
(a) The fundamental group of this graph is a free group on finitely many generators. Determine the number of such generators.

(b) Sketch a maximal tree in this graph.

(c) Describe an Euler path for this graph.

There is space for drawings on this page and the next one.

Drawing for Problem 1



Source: http://images.huffingtonpost.com/2014-11-20-pentagram.jpg

2. [25 points] Let $p: (E, e) \to (S^1, 1)$ be a connected covering space and assume E is compact Hausdorff. Prove that E is homeomorphic to S^1 . [Hint: For each n find an n-sheeted covering space projection onto S^1 .]

3. [20 points] Suppose that X and X' are subspaces in \mathbb{R}^n such that there are graph structures \mathcal{E} and \mathcal{E}' on X and X' respectively such that $X \cap X'$ is a single point which is a vertex of both. Explain why $X \cup X'$ has a graph complex structure.

4. [20 points] Suppose that X is the union of the open arcwise connected subspaces U and V such that $U \cap V \neq \emptyset$ is arcwise connected and both U and X are simply connected; take a base point for all of these (sub)spaces which lies in $U \cap V$. Prove that if H is the normal subgroup $\pi_1(V)$ which is (normally) generated by the image $\pi_1(U \cap V)$, then $H = \pi_1(V)$.

Extra page for use if needed