NAME:

## Mathematics 205B, Winter 2018, Examination 1

Work all questions, and unless indicated otherwise give reasons for your answers. The point values for individual problems are indicated in brackets.

| $\#$ | SCORE |
| ---: | ---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| TOTAL |  |

1. [35 points] These questions involve the pentagram (5-pointed star) graph on the next page.
(a) The fundamental group of this graph is a free group on finitely many generators. Determine the number of such generators.
(b) Sketch a maximal tree in this graph.
(c) Describe an Euler path for this graph.

There is space for drawings on this page and the next one.

## Drawing for Problem 1



Source: http://images.huffingtonpost.com/2014-11-20-pentagram.jpg
2. [25 points] Let $p:(E, e) \rightarrow\left(S^{1}, 1\right)$ be a connected covering space and assume $E$ is compact Hausdorff. Prove that $E$ is homeomorphic to $S^{1}$. [Hint: For each $n$ find an $n$-sheeted covering space projection onto $S^{1}$.]
3. [20 points] Suppose that $X$ and $X^{\prime}$ are subspaces in $\mathbb{R}^{n}$ such that there are graph structures $\mathcal{E}$ and $\mathcal{E}^{\prime}$ on $X$ and $X^{\prime}$ respectively such that $X \cap X^{\prime}$ is a single point which is a vertex of both. Explain why $X \cup X^{\prime}$ has a graph complex structure.
4. [20 points] Suppose that $X$ is the union of the open arcwise connected subspaces $U$ and $V$ such that $U \cap V \neq \emptyset$ is arcwise connected and both $U$ and $X$ are simply connected; take a base point for all of these (sub)spaces which lies in $U \cap V$. Prove that if $H$ is the normal subgroup $\pi_{1}(V)$ which is (normally) generated by the image $\pi_{1}(U \cap V)$, then $H=\pi_{1}(V)$.

Extra page for use if needed

