Mathematics 205B, Winter 2012, Take-home assignment 2

ANSWER KEY

1. (a) Suppose that the simplicial complex K is a union of two connected subcomplexes
K, UK, where each K; is connected, and suppose also that the intersection K1 NKj is starshaped
with respect to some vertex v, where v is minimum in a given linear ordering w of the vertices in
K. Prove that
Hy(K) = Hy(Ki) & Hy(K)

for all ¢ > 0.

SOLUTION:  Use the Mayer-Vietoris exact sequence of the decomposition K = K7 U Ko:
+— Ho 1 (K) — Hy(Ky NKy) — H(Ky) & Hy(Kz) — Hy(K) — -

Since the intersection is star shaped, it follows that the H,(K; NKz) = 0 if ¢ > 0, and hence if
q > 2 the sequence consists of pieces having the form

0= Hq(Kl N KQ) — Hq(Kl) D Hq(KQ) — Hq(K) — q—l(Kl N KQ) =0.

These exact sequences imply that the map from H,(K;) @ H,(K2) to Hy(K) is an isomorphism if
q > 2. We can obtain the same conclusion when g = 1 if we know that the map

Ho(Kl N KQ) — Hg(Kl) ® Ho(Kg)

is injective since this will imply that H;(K) — Ho(K; N Ks) is once again a trivial map; this
in turn implies that the map H; (K1) ® H;(K2) to H;(K) is onto, and the map is also 1-1 since
Hi(K; NKs) = 0.

By hypothesis the intersection is connected (because it is starshaped), and therefore Hy(K; N
K5) = Z, and the class of any vertex is a generator. If L is the component of K; containing the
intersection, then we know that Ho(K; NKs) — Hy(L1) is an isomorphism and Hy(L1) — Ho(K;)
is injection onto a direct summand, so this implies that the map Ho(K1NKs) — Ho(K;)® Hy(Ko)
is automatically injective, and the conclusion about H; then follows by the preceding argument.m

(b) Given a simplicial complex K, prove that it is isomorphic to a subcomplex of a complex L
such that the homology homomorphisms H,(K) — H,(L) is trivial for all ¢ > 0. [Hint: Why is
K isomorphic to a subcomplex of some simplex with the same number of vertices?]

SOLUTION:  Choose a linear ordering for the ¢+ 1 vertices of K, and define a map from the
underlying space P to the simplex A, sending a simplex with vertices v;), - V() to the face
of A, with vertices e;), ---€;(,), Where e; is the standard unit vector (for j = 0, ... ,q the gth
coordinate is 1 and the others are zero). This defines an isomorphism from K to a subcomplex K
of A, and it follows immediately that the inclusion induced mappings from H ;(Kg) to H;(A,) are
trivial for j > O.m



2. Let n be a positive integer. A topological n-manifold is a Hausdorff space M such that
every point p € M has an open neighborhood which is homeomorphic to an open subset of R"™.

(a) Prove that the local homology groups of M at each point z € M are infinite cyclic in
dimension n and zero otherwise. [Hint: Use the localization principle for local homology and the
fact that = has an open neighborhood homeomorphic to a subset of R™.]

SOLUTION:  Let p € M, and let U C M be an open neighborhood of p which is homeomor-
phic to an open subset in R"™. Then we have H,(M, M —{p}) = H.(U,U — {p}) by the localization
principle, so that topological invariance and excision imply the latter group is homeomorphic to
H,.(R",R™ — {0}), which is infinite cyclic in dimension n and zero otherwise.m

(b) Prove that if M is a topological m-manifold and N is a topological n-manifold. Then M
is homeomorphic to N only if m = n.

SOLUTION:  If K is a k-manifold then the first part shows that the local homology groups
at every point are infinite cyclic in dimension k£ and zero elsewhere. If K is homeomorphic to both
an n-manifold and and m-manifold, this implies that there is exactly one nonzero local homology
group, which is in dimension n if K is an n-manifold and in dimension m if K is an m-manifold.
The only way these can both happen is if m = n.m

(c) Suppose that f: M — N is a 1-1 continuous mapping of topological n-manifolds. Prove
that f is an open mapping. [Hint: Why does it suffice to prove that each p € M has an
open neighborhood U, such that f|U, is 1-17 Each point f(p) has an open neighborhood V,,
which is homeomorphic to an open subset of R". Why is there a neighborhood of p which is also
homeomorphic to an open subset of R™ and is mapped into V), by f7]

SOLUTION: To see the first sentence in the hint, note that if W C M is an open subset
and the condition in the hint is true, then the restrictions of f to the open subsets W N U, are all
open. Since

fvl = U fwnuy)

and the maps f|W N U, are all open, this implies that f[IV] is also open.

To construct U, proceed as suggested in the hint. By continuity there is some open neighbor-
hood N,, of p such that f[N,] C V,, and in N,, there is some open neighborhood U, of p which is
homeomorphic to an open subset of R". By construction the restriction of f to U, is 1-1, and since
f maps U, into V}, one can use invariance of domain to deduce that f{U,] C V,, is open.m

(d) Prove that S™ is not homeomorphic to a subset of R". — In nonmathematical terms,
this means that one cannot continuously flatten out a deflated beach ball on a table without some
overlapping of points.m

SOLUTION:  Suppose that such a homeomorphism h existed. Then by the preceding part of
the problem we know that the image of h is an open subset of R™. However, since S™ is compact,



this image is also a closed subset, so that by connectedness h[S™] must be all of R" and hence
S™ and R™ are homeomorphic (h is a homeomorphism onto its image). This is clearly falso, so no
homeomorphism like A can exist.m

3. Let (A.,d,) be a chain complex (say over the category of abelian groups). A multi-
plicative structure on (A,,d,) is a family of bilinear mappings

Ppgt Ap X Ag = Apiq

which is a homomorphism in each variable with the other held constant and satisfies the following
version of the Leibniz rule:

de(ap,aq) = ¢(dap),aq) + (=1)P¢(ap,d(ay))

Usually it is convenient to denote ¢(x,y) by notation such as z * y.

(a) Prove that ¢ induces a family of bilinear mappings
Px 2 Hp(A) X Hy(A) — Hpyq(A)

such that if u and v are represented by cycles x and y, then xx*y is a cycle and u*v is represented by
x % y. The proof should include justifications of the following assertions (this list is not necessarily
exhaustive):

(1) If x and y are cycles then so is x * y.

(2) If £ = dw and y is a cycle then x * y is a boundary. Likewise, if x is a cycle and y = dv
then x * y is a boundary.

SOLUTION:  The first major steps are to prove that the proposed definition

pe([u], [v]) = lp(u,v)]

has property (1) and does not depend upon the choices of u and v. To see that du = 0 and dv =0
imply dp(u,v) = 0, expand the left hand side using the Leibniz-like identity:

dluxv) = (du)*v + (—1)Pux* (dv)

This follows quickly because bilinearity implies a * 0 and 0 * b are both zero, so du =0 and dv =0
imply that the right hand side of the displayed equation becomes 0 * v £ u* 0 = 0. Next, we
need to show that if © and u’ represent the same homology class and similarly for v and v’, then
[uxv] = [u' *v']. The assumptions imply that u — v’ = dw and v — v" = dz for suitable w and x.
Therefore we have [u' * v] = [(u + dw) * v] = [(u * v) + (dw * v)] by blinearity, and since passage to
equivalence classes is additive the right hand side of these equations becomes [u * v] + [(dw) * v]; if
we know that (dw)*v is a boundary, then the sum will reduce to [u*v] and we will have shown that



this class only depends upon the homology class of the cycle u. But now we can use the Leibniz-like
identity to conclude that

dlwxv) = (dw)xv £ wx*(dv) = (dw)*xv £ wx0 = (dw)=xv

which means that (dw) * v is a boundary.

Similarly, if we can show that du = 0 implies u  (dx) is a boundary, it will follow that [u * v]
also depends only upon the homology class of v. But now we have

dluxz) = (du)*z* £tux(dr) = O0xx + ux*x(dr) = Zux(dzr)

so that u * (dz) = d(£u * x) and this completes the verification that ¢, is well defined.

To prove bilinearity, recall that the addition in homology satisfies [y1] + [y2] = [y1 + y2], and
since [(u1 +uz2) *v] = [(u1 *v) + (u2 * v)] by bilinearity the right hand side is just [uy * v] 4 [ug * v],
proving linearity in the first variable. Similarly we have

[u,(v1 +v2)] = [(uxv))+ (uxwvy)] = [uxvi] + [u,v9]

yielding linearity in the second variable as well.m

(c) Prove that the multiplicative structure in homology satisfies the associative law (uv)*w =
u* (v *w) if the multiplicative structure on the chain complex level has this property.

SOLUTION:  We want to prove that ([u] x [v]) * [w]) = [u] * ([v] * [w]) if the multiplicative
structure is associative on the chain level, and this is a consequence of the following sequence of
equations:

([u ) *[w] = [uxv]x[w] = [(uxv)xw] = [ux(vrw)] = [ul*fvrw] = [u]*([v]*[w])

where the crucial step is given by the associativity relation [u * (v * w)] = [(u*v)*w|.m

(d) A two-sided unit for a multiplicative structure is a class e € Ay such that de = 0 and
exa = a = a*e for all a. Prove that the homology class of e is a two-sided unit for the
multiplicative structure in homology and that this class is nontrivial if H,(A) # 0 for some ¢ # 0.

SOLUTION:  Since exa = a = a * e for all a, we have
[e]«[a] = [exa] = [a] = [axe] = [a]x][e]

which shows taht [e] € Hyo(A) is a two sided multiplicative unit. Bilinearity implies that [u]*[v] =0
if either uw or v is trivial in homology (see the preceding parts of this exercises), so if [u] x [v] is
nonzero then both [u] and [v] must be nonzero. Choose a such that [a] # 0, and notice that we
then have 0 # [a] = [e] * [a], which means that [e] must define a nonzero homology class.m



COMMENTS ON THE LAST EXERCISE.

1. (For those familiar with differential forms.) The sign factor in the Leibniz-like identity
might seem arbitrary, but there are counterparts in related constructions. For example, if one
considers differential forms over open subsets of some R", then the exterior derivative of the wedge
product of a p-form and g-form satisfies the rule

dwNd) = (dw)ANO + (—1)Pw A (dF) .

2. The corresponding commutative law takes the form
agxa, = (—1)Pa,=*a,

but things are more complicated because there are many structures which are not exactly commu-
tative on the chain level but are so in homology. In fact, such commutativity failures on the chain
level reflect a fundamental difficulty in algebraic topology which can be managed effectively but
leads to monumental complications in the subject.

3. Chaper 3 of Hatcher contains a far more extensive study of multiplicative structures in
homology theory.



