
Mathematics 205B, Winter 2012, Take-home assignment 2

ANSWER KEY

1. (a) Suppose that the simplicial complex K is a union of two connected subcomplexes
K1 ∪K2 where each Ki is connected, and suppose also that the intersection K1 ∩K2 is starshaped
with respect to some vertex v, where v is minimum in a given linear ordering ω of the vertices in
K. Prove that

Hq(K) ∼= Hq(K1) ⊕ Hq(K2)

for all q > 0.

SOLUTION: Use the Mayer-Vietoris exact sequence of the decomposition K = K1 ∪K2:

· · · → Hq+1(K) → Hq(K1 ∩K2) → Hq(K1) ⊕ Hq(K2) → Hq(K) → · · ·

Since the intersection is star shaped, it follows that the Hq(K1 ∩ K2) = 0 if q > 0, and hence if
q ≥ 2 the sequence consists of pieces having the form

0 = Hq(K1 ∩K2) → Hq(K1) ⊕ Hq(K2) → Hq(K) → Hq−1(K1 ∩K2) = 0 .

These exact sequences imply that the map from Hq(K1) ⊕ Hq(K2) to Hq(K) is an isomorphism if
q ≥ 2. We can obtain the same conclusion when q = 1 if we know that the map

H0(K1 ∩K2) → H0(K1) ⊕ H0(K2)

is injective since this will imply that H1(K) → H0(K1 ∩ K2) is once again a trivial map; this
in turn implies that the map H1(K1) ⊕ H1(K2) to H1(K) is onto, and the map is also 1–1 since
H1(K1 ∩K2) = 0.

By hypothesis the intersection is connected (because it is starshaped), and therefore H0(K1 ∩
K2) = Z, and the class of any vertex is a generator. If L1 is the component of K1 containing the
intersection, then we know that H0(K1∩K2) → H0(L1) is an isomorphism and H0(L1) → H0(K1)
is injection onto a direct summand, so this implies that the map H0(K1∩K2) → H0(K1)⊕H0(K2)
is automatically injective, and the conclusion about H1 then follows by the preceding argument.

(b) Given a simplicial complex K, prove that it is isomorphic to a subcomplex of a complex L

such that the homology homomorphisms Hq(K) → Hq(L) is trivial for all q > 0. [Hint: Why is
K isomorphic to a subcomplex of some simplex with the same number of vertices?]

SOLUTION: Choose a linear ordering for the q +1 vertices of K, and define a map from the
underlying space P to the simplex ∆q sending a simplex with vertices vi(0), · · ·vi(q) to the face

of ∆q with vertices ei(0), · · · ei(q), where ej is the standard unit vector (for j = 0, ... , q the j th

coordinate is 1 and the others are zero). This defines an isomorphism from K to a subcomplex K0

of ∆q, and it follows immediately that the inclusion induced mappings from Hj(K0) to Hj(∆q) are
trivial for j > 0.



2. Let n be a positive integer. A topological n-manifold is a Hausdorff space M such that
every point p ∈ M has an open neighborhood which is homeomorphic to an open subset of R

n.

(a) Prove that the local homology groups of M at each point x ∈ M are infinite cyclic in
dimension n and zero otherwise. [Hint: Use the localization principle for local homology and the
fact that x has an open neighborhood homeomorphic to a subset of R

n.]

SOLUTION: Let p ∈ M , and let U ⊂ M be an open neighborhood of p which is homeomor-
phic to an open subset in R

n. Then we have H∗(M,M −{p}) ∼= H∗(U,U −{p}) by the localization
principle, so that topological invariance and excision imply the latter group is homeomorphic to
H∗(R

n, Rn − {0}), which is infinite cyclic in dimension n and zero otherwise.

(b) Prove that if M is a topological m-manifold and N is a topological n-manifold. Then M

is homeomorphic to N only if m = n.

SOLUTION: If K is a k-manifold then the first part shows that the local homology groups
at every point are infinite cyclic in dimension k and zero elsewhere. If K is homeomorphic to both
an n-manifold and and m-manifold, this implies that there is exactly one nonzero local homology
group, which is in dimension n if K is an n-manifold and in dimension m if K is an m-manifold.
The only way these can both happen is if m = n.

(c) Suppose that f : M → N is a 1–1 continuous mapping of topological n-manifolds. Prove
that f is an open mapping. [Hint: Why does it suffice to prove that each p ∈ M has an
open neighborhood Up such that f |Up is 1–1? Each point f(p) has an open neighborhood Vp

which is homeomorphic to an open subset of R
n. Why is there a neighborhood of p which is also

homeomorphic to an open subset of R
n and is mapped into Vp by f?]

SOLUTION: To see the first sentence in the hint, note that if W ⊂ M is an open subset
and the condition in the hint is true, then the restrictions of f to the open subsets W ∩ Up are all
open. Since

f [W ] =
⋃

p

f [W ∩ Up]

and the maps f |W ∩ Up are all open, this implies that f [W ] is also open.

To construct Up proceed as suggested in the hint. By continuity there is some open neighbor-
hood Np of p such that f [Np] ⊂ Vp, and in Np there is some open neighborhood Up of p which is
homeomorphic to an open subset of R

n. By construction the restriction of f to Up is 1–1, and since
f maps Up into Vp one can use invariance of domain to deduce that f [Up] ⊂ Vp is open.

(d) Prove that Sn is not homeomorphic to a subset of R
n. — In nonmathematical terms,

this means that one cannot continuously flatten out a deflated beach ball on a table without some
overlapping of points.

SOLUTION: Suppose that such a homeomorphism h existed. Then by the preceding part of
the problem we know that the image of h is an open subset of R

n. However, since Sn is compact,



this image is also a closed subset, so that by connectedness h[Sn] must be all of R
n and hence

Sn and R
n are homeomorphic (h is a homeomorphism onto its image). This is clearly falso, so no

homeomorphism like h can exist.

3. Let (A∗, d∗) be a chain complex (say over the category of abelian groups). A multi-

plicative structure on (A∗, d∗) is a family of bilinear mappings

ϕp,q : Ap × Aq → Ap+q

which is a homomorphism in each variable with the other held constant and satisfies the following
version of the Leibniz rule:

dϕ(ap, aq) = ϕ(d(ap), aq) + (−1)pϕ(ap, d(aq))

Usually it is convenient to denote ϕ(x, y) by notation such as x ∗ y.

(a) Prove that ϕ induces a family of bilinear mappings

ϕ∗ : Hp(A) × Hq(A) → Hp+q(A)

such that if u and v are represented by cycles x and y, then x∗y is a cycle and u∗v is represented by
x ∗ y. The proof should include justifications of the following assertions (this list is not necessarily
exhaustive):

(1) If x and y are cycles then so is x ∗ y.

(2) If x = dw and y is a cycle then x ∗ y is a boundary. Likewise, if x is a cycle and y = dv

then x ∗ y is a boundary.

SOLUTION: The first major steps are to prove that the proposed definition

ϕ∗([u], [v]) = [ϕ(u, v)]

has property (1) and does not depend upon the choices of u and v. To see that du = 0 and dv = 0
imply dϕ(u, v) = 0, expand the left hand side using the Leibniz-like identity:

d(u ∗ v) = (du) ∗ v + (−1)pu ∗ (dv)

This follows quickly because bilinearity implies a ∗ 0 and 0 ∗ b are both zero, so du = 0 and dv = 0
imply that the right hand side of the displayed equation becomes 0 ∗ v ± u ∗ 0 = 0. Next, we
need to show that if u and u′ represent the same homology class and similarly for v and v ′, then
[u ∗ v] = [u′ ∗ v′]. The assumptions imply that u − u′ = dw and v − v′ = dx for suitable w and x.
Therefore we have [u′ ∗ v] = [(u + dw) ∗ v] = [(u ∗ v) + (dw ∗ v)] by blinearity, and since passage to
equivalence classes is additive the right hand side of these equations becomes [u ∗ v] + [(dw) ∗ v]; if
we know that (dw)∗v is a boundary, then the sum will reduce to [u∗v] and we will have shown that



this class only depends upon the homology class of the cycle u. But now we can use the Leibniz-like
identity to conclude that

d(w ∗ v) = (dw) ∗ v ± w ∗ (dv) = (dw) ∗ v ± w ∗ 0 = (dw) ∗ v

which means that (dw) ∗ v is a boundary.

Similarly, if we can show that du = 0 implies u ∗ (dx) is a boundary, it will follow that [u ∗ v]
also depends only upon the homology class of v. But now we have

d(u ∗ x) = (du) ∗ x ∗ ± u ∗ (dx) = 0 ∗ x ± u ∗ (dx) = ±u ∗ (dx)

so that u ∗ (dx) = d(±u ∗ x) and this completes the verification that ϕ∗ is well defined.

To prove bilinearity, recall that the addition in homology satisfies [y1] + [y2] = [y1 + y2], and
since [(u1 + u2) ∗ v] = [(u1 ∗ v) + (u2 ∗ v)] by bilinearity the right hand side is just [u1 ∗ v] + [u2 ∗ v],
proving linearity in the first variable. Similarly we have

[u, (v1 + v2)] = [(u ∗ v1) + (u ∗ v2)] = [u ∗ v1] + [u, v2]

yielding linearity in the second variable as well.

(c) Prove that the multiplicative structure in homology satisfies the associative law (u∗v)∗w =
u ∗ (v ∗ w) if the multiplicative structure on the chain complex level has this property.

SOLUTION: We want to prove that ([u] ∗ [v]) ∗ [w]) = [u] ∗ ([v] ∗ [w]) if the multiplicative
structure is associative on the chain level, and this is a consequence of the following sequence of
equations:

([u]∗ [v])∗ [w] = [u∗v]∗ [w] = [(u∗v)∗w] = [u∗ (v ∗w)] = [u]∗ [v ∗w] = [u]∗ ([v]∗ [w])

where the crucial step is given by the associativity relation [u ∗ (v ∗ w)] = [(u ∗ v) ∗ w].

(d) A two-sided unit for a multiplicative structure is a class e ∈ A0 such that de = 0 and
e ∗ a = a = a ∗ e for all a. Prove that the homology class of e is a two-sided unit for the
multiplicative structure in homology and that this class is nontrivial if Hq(A) 6= 0 for some q 6= 0.

SOLUTION: Since e ∗ a = a = a ∗ e for all a, we have

[e] ∗ [a] = [e ∗ a] = [a] = [a ∗ e] = [a] ∗ [e]

which shows taht [e] ∈ H0(A) is a two sided multiplicative unit. Bilinearity implies that [u]∗ [v] = 0
if either u or v is trivial in homology (see the preceding parts of this exercises), so if [u] ∗ [v] is
nonzero then both [u] and [v] must be nonzero. Choose a such that [a] 6= 0, and notice that we
then have 0 6= [a] = [e] ∗ [a], which means that [e] must define a nonzero homology class.



COMMENTS ON THE LAST EXERCISE.

1. (For those familiar with differential forms.) The sign factor in the Leibniz-like identity
might seem arbitrary, but there are counterparts in related constructions. For example, if one
considers differential forms over open subsets of some R

n, then the exterior derivative of the wedge
product of a p-form and q-form satisfies the rule

d(ω ∧ θ) = (dω) ∧ θ + (−1)p ω ∧ (dθ) .

2. The corresponding commutative law takes the form

aq ∗ ap = (−1)pqap ∗ aq

but things are more complicated because there are many structures which are not exactly commu-
tative on the chain level but are so in homology. In fact, such commutativity failures on the chain
level reflect a fundamental difficulty in algebraic topology which can be managed effectively but
leads to monumental complications in the subject.

3. Chaper 3 of Hatcher contains a far more extensive study of multiplicative structures in
homology theory.


