CHAPTER VI

MULTIDIMENSIONAL PROJECTIVE GEOMETRY

In this chapter we shall study coordinate projective spaces of arbitrary dimension. As in the previous
chapter, we shall use concepts from linear algebra extensively. Although some portions of this chapter
contain results of the previous one as special cases, most of the material involves concepts not covered
earlier in these notes.

One major difference between this chapter and the previous one is that we are mainly interested in
somewhat different types of results. In particular, we are interested in the geometric automorphisms of
a coordinate projective space FP™, and the results of this chapter give a simple but complete description
of them. In the final section of this chapter we shall assume that we have a field (or skew-field) of scalars
F which has a notion of ordering with the same basic properties of the orderings of the real or rational
numbers, and we shall analyze the geometrical implications of such algebraic orderings.

1. Linear varieties and bundles

Our first objective is to extend the results of Section V.1 on duality and homogeneous coordinates
from FP? to FP", where n > 3 is arbitrary. As indicated in Theorem IV.16, if (S,1I,d) is an
n-dimensional projective (incidence) space, then the “points” of the dual projective n-space
(S*,11*,d*) are the hyperplanes of S. Suppose now that S = FP” for some skew-field F; by
the results of Section V.1, if n = 2 then we can introduce homogeneous coordinates into the
dual projective plane (IF']P’2 )* We shall extend this to all n > 2, showing that one can define
well-behaved homogeneous coordinates for the hyperplanes of FP™ for all n > 2 such that most
of the fundamental results from Section V.1 also extend to this more general setting.

According to Theorem II1.12, a hyperplane in FP" is definable by a right homogeneous linear
equation

n+1

i=1
where the coefficients wu; are not all zero. Furthermore, two n-tuples (w1, - - ,up+1) and
(v1, -+ ,vp41) define the same hyperplane if and only if there is a nonzero k € F such that
u; = kwv; for all ¢ (compare Section V.1). This immediately yields the following analog of

Theorem V.1:

THEOREM VIL.1. Let F be a skew-field, and let n > 2. Then the set of hyperplanes in FP™ is in
1 — 1 correspondence with Sy(FY" 1), Furthermore, if the hyperplane H corresponds to the left
1-dimensional vector subspace F -6 and X € FP™ is given by £ - F, then X € H if and only if
f-¢ =001
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112 VI. MULTIDIMENSIONAL PROJECTIVE GEOMETRY

As before, if the hyperplane H corresponds to the left 1-dimensional vector subspace {2 of FLn+!1,
then a set of homogeneous coordinates for H is any nonzero vector in f2.

Motivated by the preceding description of hyperplanes, we define a linear variety in FP™ to be
the set of all points whose homogeneous coordinates satisfy a system of linear homogeneous

equations
n+1

Z ui,jxj =0 1
7=1

The following result shows that linear varieties are the same as geometrical subspaces.

VAN

1 < m.

THEOREM VI1.2. Let V be a linear variety defined by a system of linear homogeneous equations
as above, and suppose that the (left) row rank of the matrizx B = (u;; ) is equal to r. Then V
s an r-plane in FP".

Proof. If V} is the solution space of the system of equations, then clearly V' = S1(Vp). Since
the rank of B is r, then dimension of Vj is equal to n+ 1 — r by Theorem A.10, and hence V is
an (n — r)-plane in FP™.

On the other hand, assume that W is a (k + 1)-dimensional vector subspace of F**h1 so that

S1(W) is a k-plane. Let wy, -+ Wy be a basis for W, and write w; = T(wi; -+ wgi14)
Consider the left-homogeneous system of linear equations
> yiwii = 0 (1 <i<k+1).
i
Since the right column rank of the matrix C' = (wj;) is equal to k+1, the left subspace of
solutions has dimension equal to n—k (again by Theorem A.10). Let vy, --- v, _j be a basis for
the space of solutions, and write v; = (v;1 - vjp41). Then, by construction, the vector
subspace W is contained in the space of solutions of the system
Zvjﬂ-szo (1§]§n—k)
J

On the other hand, the space of solutions W' has dimension equal to
(n+1) — (n—k) =k + 1.

Since this is the dimension of W, we must have W’ = W, and this proves the second half of the
theorem.l

Similarly, we may define a linear variety of hyperplanes to be the set of all hyperplanes whose
homogeneous coordinates satisfy a system of left-homogeneous linear equations

If the right rank of X = (z;; ) is r, the variety of hyperplanes is said to be (n —r)-dimensional.
The following result shows that linear varieties of hyperplanes are also equivalent to geometrical
subspaces of FP”.

THEOREM VI.3. An r-dimensional linear variety of hyperplanes in FP™ consists of all hyper-
planes containing a fized (n — r — 1)-plane in the terminology of Chapter IV, a linear bundle
with the given (n —r — 1)-plane as center). Conversely, every (n — r — 1)-plane in FP™ is the
center of some linear variety of hyperplanes.
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Proof. The ideas are similar to those employed in Theorem 2. Let Cy be the span of the rows
of the matrix (z; ;). By hypothesis, dim Cyp = n —r. Thus C = §1(Cj) is an (n —r — 1)-plane in
FP", and every hyperplane containing it automatically belongs to the linear variety. Conversely,
if yo € Cp, then we may writey = >, x;r; where x; = (214, -+ ,Zn41,) and r; € F, so that
if H lies in the variety and 6 is a set of homogeneous coordinates for H then we have

-y = Z @-x;)r; = 0.
i
Thus every hyperplane in the variety contains every point of C'. This proves the first half of the
theorem.

Now suppose that we are given an (n —r — 1)-plane Z = S§1(Zy). Let z1, --- ,z,_, be a basis
for Zy, and write z; = (21, --+ ,2n+1,;). Consider the variety of hyperplanes defined by the
system of homogeneous equations
Zuizi,j:0 1 <3< n-r).
J

Since the right rank of the matrix (z;;) is equal to (n — r), this bundle is r-dimensional.
Furthermore, its center Z’ is an (n — r — 1)-plane which contains every point of Z by the
reasoning of the previous paragraph. Therefore we have Z = Z'.1

The preceding result has some useful consequences.

THEOREM VIL.4. Let (FP™)* be the set of hyperplanes in FP™, and let IT* and d* be defined as
in Section IV.3. Then a subset S C (FP™)* is in II* if and only if it is a linear variety of
hyperplanes, in which case d*(S) is the dimension as defined above.l

THEOREM VL5. (compare Theorem V.1) The triple
((FP™)*, II*, d¥)

is a projective n-space which is isomorphic to Sy(FL7+L).

Since Theorem 4 is basically a restatement of Theorem 3, we shall not give a proof. However, a
few remarks on Theorem 5 are in order.

Proof of Theorem 5. By Theorem 1 we have a 1-1 correspondence between (FP™)* and
S1(FH7+1). Furthermore, the argument used to prove Theorem 2 shows that r-dimensional
varieties of hyperplanes correspond to set of the form S;(V'), where V' is an (r + 1)-dimensional
left subspace of F1"*! (merely interchange the roles of left and right in the proof, switch the
orders of the factors in products, and switch the orders of double subscripts). But r-dimensional
linear bundles correspond to r-dimensional linear varieties of hyperplanes by Theorems 3 and 4.
Combining these, we see that r-dimensional linear bundles of hyperplanes correspond to r-planes
in S;(F'"*+1) under the 1-1 correspondence between (FP")* and S;(F'"+1). 1

By the Coordinatization Theorem (Theorem IV.18), this result implies the first half of Theorem
IV.16. On the other hand, if we interchange the roles of left and right, column vectors and row
vectors, and the orders of multiplication and indices in the reasoning of this section, we find
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that the dual of S1(F1"*1) is isomorphic to FP?*!. In fact, this isomorphism h : S (FL7+H1)* —
S1(F"+11) is readily seen to have the property that the composite h° f*°e given by

FP™ % (F]Pm)** L} Sl(Fl,n+1)* L) FpPn
is the identity (here f* is an isomorphism of dual spaces induced by f as in Exercise 1V.3.4).
This establishes the second half of Theorem IV.16 and allows us to state the Principle of
Duality in Higher Dimensions:

METATHEOREM VIL.6. A theorem in projective geometry in dimension m > 2 remains true if
we interchange the expressions point and hyperplane, the phrases r-planes in an n-space and
(n —r — 1)-planes in an n-space, and the words contains and is contained in.l

We shall now assume that F is commutative. Since F = FOP in this case, the dual of FP"
is isomorphic to FP"™. Hence the metatheorem may be modified in an obvious way to treat
statements about projective n-spaces over fields.

The cross ratio of four hyperplanes four hyperplanes in FP" containing a common (n — 2)-plane
may be defined in complete analogy with the case n = 2, which was treated in Section V.2. In
particular, Theorem V.14 generalizes as follows.

THEOREM VI.7. Let Hy, Hy, Hs be distinct hyperplanes through an (n — 2)-plane K in FP™,
and let Hy # Hy be another hyperplane through K. Let L be a line disjoint from K, and let X;
be the unique point where L meets H; for 1 =1,2,3. Then the point X4 € L lies on Hy if and
only if we have

XR(Xy, X2, X3,X4) = XR(Hy, Hy, Hs, Hy) .

The proof of this result is formally identical to the proof of Theorem V.1.H

EXERCISES

1. Let F be a field, and let X, Y, Z € FP3 be noncollinear points. Suppose that homogeneous
coordinates for these points are respectively given as follows:

T Y1 21

_ | %2 _ | Y _ | *

¢ z3 g Y3 ¢ z3
T4 Y4 24

Prove that the plane they determine has the following homogeneous coordinates:

T2 T3 X4 X1 T3 X4 xT1 T2 X4 Ty T2 I3
Y2 Y3 Ya|, — |Yr Ys Yai|, (Y1 Y2 Ya|, — (Y1 Y2 Y3
22 23 2,4 21 R3 2,4 21 22 24 Z1 22 Z3

By Theorem A.11, not all of the four determinants vanish because &, n and ( are
linearly independent. To see that X, ,Y, Z lie on the above hyperplane, consider
the determinants of the three 4 x 4 matrices whose rows are given by Tw, T¢, T
and T¢, where w runs through the three vectors in the set &, n, C.
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2. Explain why four points p; = (2, ¥, 2) € F? (where 1 < i < 4) are coplanar if and only
if the 4 x 4 determinant

1 oy 21 1
T2 Y2 22 1
r3 y3 23 1

Ty Ya 24 1
is zero, where F is a field. Formulate an analogous statement for n dimensions. [Hint: For both
parts, use the properties of determinants as described in Appendix A and the characterization
of hyperplanes in terms of n-dimensional vector subspaces of F17+1 ]

3. Write out the 3-dimensional projective duals of the following concepts:
(a) A set of collinear points.

(b) A set of concurrent lines.

(¢) The set of all planes through a given point.

(d) Four coplanar points, no three of which are collinear.
(

e) A set of noncoplanar lines.
4. What is the 3-dimensional dual of Pappus’ Theorem?

5. Let {A, B, C, D} and {A’, B', C", D’} be two triples of noncoplanar points in a projective
3-space, and assume that the lines AA’, BB’, CC" and DD’ are concurrent. Prove that the lines
of intersection
G = plane(ABC
H = plane(ABD
K = plane(ACD
L = plane(BCD

are coplanar, and state and prove the converse.

N plane(A'B'C")
N plane(A'B'D’)
N plane(A'C'D’)
N plane(B’'C'D")

N —

6. Find the equations of the hyperplanes through the following quadruples of points in RP4.

(a)

= O = W N
O = O N
_ o, OR
SN O = O

OO =W
OO ===
N = Ot O N
S =N O =
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2. Projective coordinate systems

Theorems V.6 and V.7, which provided particularly convenient choices for homogeneous coor-
dinates in one or two dimensions, proved to be extremely useful in Chapter V. We shall prove
a corresponding result for higher dimensions in this section; as one might expect, this result
has corresponding importance in higher dimensional projective geometry. All the results of this
section (except for Exercise 1) are valid if F is an arbitrary skew-field.

THEOREM VL.8. Let {By, --- , B} be a set of independent points in FP™, and let U be a point in
the r-plane By --- B, such that every proper subset of {Bq, --- ,B,,U} is independent. Then
homogeneous coordinates (3; and v can be chosen for these points may be chosen such that

(1) b =B+ -+ B

Furthermore, if 5 and 1’ is another collection of homogeneous for these points such that ()
holds, then there is a nonzero a € F such that ¢ = v'a and 5; = B} fori = 0,--- ,r.

Proof. . Since the points B; are independent, if we take arbitrary homogeneous coordinates BZ
and 1 then there exist unique scalars ¢; such that

w = 5000 + o+ ﬁr Cr -
None of the coefficients ¢; can be equal to zero, for otherwise a proper subset of { By, --- , B,,U}
would be independent, contradicting our assumption about such proper subsets. If we now take
Bi = pic; for each i, we then have the desired relation (I).0

Conversely, suppose that (1) is satisfied. If we are given arbitrary homogeneous coordinates 3/
and 1)’ for the points B; and U, then there exist nonzero scalars a and ¢; such that v = ¢'a
and 5; = f/¢;. The new homogeneous coordinate vectors satisfy a relation of the form

W = Byaoat + -+ Brgra!
and if (1) is valid then all the coefficients on the right hand side must be equal to 1. In other

words, we must have b;a~! = 1 for all i or equivalently b; = a for all 4, which is exactly what
we wanted to prove.ll

Assume now that (I) is valid, and let X be any point of the r-plane L = By --- B,. A set
of homogeneous coordinates ¢ for X is then a linear combination of the form & = ) . f; z;.
Since ¢ is defined up to multiplication by a scalar factor and the vectors 3; are defined up to
multiplication by a common scalar factor, it follows that the coefficients z; are also determined
up to multiplication by a common scalar factor, and such an ordered (r + 1)-tuple (zq, -+ , )
of coefficients is called a set of homogeneous coordinates for X € L relative to the projective
coordinate system (By --- B, |U). It is frequently denoted by notation such as X (B --- By |U).
The set {By, -+ , B, } is often called the coordinate simplex or fundamental simplex, the points
B, are said to be the vertices of this coordinate simplex, and the point U is often called the unit
point because homogeneous coordinates for this point in the projective coordinate system are
given by (1, --- ,1).

The homogeneous coordinates given in the definition of projective space may be viewed as a
special case of the preceding construction; specifically, if the unit vectors in F**! are given by
e;, then the appropriate corrdinate simplex has vertices e; - F and the corresponding unit point
isd-F, whered = ), e;. This is often called the standard coordinate system.
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The next result describes the change in homogeneous coordinates which occurs if we switch from
one projective coordinate system to another.

THEOREM VI.9. Let (By --- B, |U) and (B --- B} |U*) be two projective coordinate systems
for an r-plane in FP™, and let X be a point in this r-plane. Then the homogeneous coordinates
x; and x; of X relative to these respective coordinate systems are related by the coefficients of
an invertible matric A = (a;;) as follows:

T

*

Ty p = E Qi ke Tk
k=0

Here p is a nonzero scalar in .

Proof. Suppose that the coordinate vectors are chosen as before so that ¢ = >, f; and
P = Y. Bl If £ is a set of homogeneous coordinates for X, then homogeneous coordinates
for ¢ are defined by the two following two equations:

£ = Bim &= B
i i
Since the points lie in the same r-plane, we have

B =Y Braik
k

for sutiable scalars a; ;, and the matrix A with these entries must be invertible because the set
{Bo --- B} is independent. Straightforward calculation shows that

€= Bewe + Y, Blawze = Y fia;

which implies that 7 = >, a;,x. These are the desired equations; we have added a factor
p because the homogeneous coordinates are defined only up to a common factor.ll

EXERCISES

1. Take the projective coordinate system on RP? whose fundamental simplex points B; have
homogeneous coordinates

1 0 0 0
1 0 1 0
ﬁo - 0 5 ﬁl = 1 5 ﬂQ = 1 ) ﬁ3 - 0
0 1 0 1

and whose unit point U has homogeneous coordinates
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Find the homogeneous coordinates of the point A with respect to the system (Bg By Ba B3 | U)
where ordinary homogeneous coordinates « for A are given below; there are two parts to this
exercise corresponding to the two possibilities for A.

2

— s =
S W = =

2. Let T be an invertible linear transformation on F**1! with associated invertible matrix A,
let T, be the associated geometric symmetry of FP", let (By --- B, | U) define the standard
homogeneous coordinate system, and let X € FP™ have homogeneous coordinates given by
Tg, -+ ,Tn. What are the homogeneous coordinates of X with respect to the coordinate system

(Tu(Bo) -+ Tu(By) | Tu(U)) ?
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3. Collineations

At the beginning of Section I1.6, we noted that an appropriate notion of isomorphism for figures
in Euclidean space is given by certain 1-1 correspondences with special properties. If one
analyzes the situation further, it turns out that the relevant class of 1-1 correspondences is
given by maps which extend to isometries of the Euclidean n-space R™. Specifically, these are
1-1 mappings 7" from R" to itself with the following two properties:

(1) If x and y are distinct points in R™, then T satisfies the identity
d(x,y) = d(T(x), T(y)) ;
in other words, T preserves distances between points.
(74) If x, y and z are distinct points in R™, then T satisfies the identity
measure(Zxyz) = measure( ZT(x)T(y)T(z)) ;

in other words, T" preserves angle measurements.

Further information on such mappings and closely related issues can be found in the Addendum
to Appendix A and the references cited there. For our purposes here, one important point is
that one can describe all such isometries of R™ in a very simple and explicit manner. Specifically,
every such isometry of R® & R™! is given by a mapping of the form T(x) = Ax + b, where
b € R* = R™! and A is an n x n matrix which is orthogonal; the latter means that T4 is
equal to A™! or equivalently that the rows and columns of A define orthonormal sets of vectors.
In this section we shall prove similar results for symmetries of projective spaces, showing that
all geometric symmetries of FP™ are also given by some fairly basic constructions using linear
algebra.

Frequently in this section we shall use the term collineation to denote an isomorphism from
one n-dimensional incidence space to another (assuming n > 2). This name dates back to the
19*" century, and at the time collineations were the first types of incidence space isomorphisms
to be considered abstractly.

Algebraic automorphisms and geometric symmetries

We have seen that every invertible (n + 1) x (n + 1) matrix A determines a collineation f4 of
FP™ which is defined by the formula

falx-F) = Ax-F .
However, for many choices of F there are examples which do not have this form. In particular,
if F is the complex numbers C and x denotes the map on F**1! which takes a column vector

with entries z; to the column vector whose entries are the complex conjugates’ Z;, then there is
a well-defined collineation g, on CP" such that

gx(x-C) = x(x)-C
that can also be defined, but it turns out that such a map is not equal to any of the maps f4
described previously. The proof that g, is a conjugation depends upon the fact that complex
conjugation is an automorphism; i.e., we have z1 + 20 = Z1 + %3, z1 - 22 = 21 - 23, and
conjugation is a 1-1 correspondence to C to itself because conjgation is equal to its own inverse.

IRecall that if a complex number is given by u + vi, where i2 = —1, then its conjugate is equal to a — bi.



120 VI. MULTIDIMENSIONAL PROJECTIVE GEOMETRY

More generally, if F is an arbitrary skew-field and y is an automorphism of F, then one can
construct a similar collineation g, on FP" that is not expressible as f4 for some A. One major
objective of this section is to prove that mappings of the form f4 and g, for the various choices
of A and x determine all collineations of FP™. In order to simplify the arguments, for the rest
of this section we shall assume that the skew-field F is commutative; at the end of the section
we shall discuss some aspects of the noncommutative case.

In fact, one of the most important prepreties of a collineation f from one coordinate projective
space to another (perhaps over a different field) is that the collineation determines an isomor-
phism ®; of the underlying fields; if the two projective spaces are identical, this isomorphism
becomes an automorphism. The first result of this section establishes the relationship between
collineations and field isomorphisms.

THEOREM VI.10. Let f be a collineation from the projective space FP™ to the projective space
EP", where F and E are fields and n > 2. Then there is an isomorphism

¢, F — E
characterized by the equation
O (XR(Y1, Yo, Y3, Ya) ) = XR(®;(Y1), 1(Y2), ®1(Y3), ®5(Ya))

where Y1, Ya, Y, Yy is an arbitrary sequence of collinear points such that the first three are
distinct and Y4 # Ys.

There are three basic steps in the proof; namely, defining a map from F to E which dependes
upon some choices, showing that such a map is an isomorphism of fields, and finally showing
that the map is independent of the choices that were made at the first step. The second part
of the proof uses the results from Section V.5, and the third part — which is by far the longest
— relies heavily on results from Chapter V on cross ratios.

Proof of Theorem 10. Construction of a mapping from F to E. Let Xy, X; and U be
three distinct collinear points, and let ¢ € F. Then there is a unique point ) € X¢X; such that
Q ¢ Py and XR(Xo, X1,U,Q) = q. Define ®¢(q) = XR(f(XO),f(Xl),f(U),f(Q) ) Strictly
speaking, one should write this as ® ¢ x, x, v to indicate that it depends upon the choices of Xy,
Xiand U.

We claim that the map ® x, x, v defines an isomorphism from F toE. — Since the elements of
E are in 1-1 correspondence with the elements of f(Xo)f(X1)—{f(Xo)} and f maps XoX;—{Xo}
bijectively to f(Xo)f(X1) — {f(Xo)}, it follows that ® x, x, v is 1-1 and onto. Furthermore,
to see that the latter map is an isomorphism, take another line L through X, coplanar points
Zp and D, and points A, B € X(X; as in Section V.3. Let f(X;) = X], f[L] = L', f(Zo) — Z),
f(A)=A" f(D)=D’, and f(B) = B’. If X is any point constructed from the unprimed point
as in Section V.5, let X’ be the corresponding point constructed from the primed points. Since
f is a collineation, it is easy to verify that f(X) = X’ for all point X constructed in Section V.5.
In particular, f(C) = C’ and f(K) = K'. But the latter equalities combined with Theorem
V.28 and V.29 imply that

s xoxu(@t+b) = Py, xul@) + Ppxox,0(b) -
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Proof that the map ®¢ x, x, v depends only on the line M containing Xo, X7 and U. — It
suffices to show that

@ xo,x,0(XR(4,B,C, D)) = XR(f(A), f(B), f(C),f(D))
for every quadruple of distinct points on XgX;. There are several cases to be considered.
CASE 1. None of the points A, B, C, D is Xy. If we choose homogeneous coordinates &; for

X; and 4 for U such that & + & = ¥, then homogeneous coordinates «, 3, v and § for A, B,
C and D are given as follows:

2 ® Q2
I

and therefore we have

Cfx0,x,0(XR(A, B,C, D)) = XR(f(A), f(B), f(C), f(D))

by the formula established in Theorem V.13 and the fact that ®f x, x, ¢ is an isomorphism of
fields.

CASE 2. One of the points is Xy. We claim it suffices to consider the case A = X. For by
Theorem V.12 there is a reordering (o (A),0(B),0(C),0(D)) of (A, B,C, D) such that o(A) =
Xp and

XR(o(A),0(B),o(C),0(D)) = XR(A,B,C,D) .

If the assertion is correct for quadruples whose first term is X, then
@ x050.0( (0(4),0(B),0(C),0(D)) ) = (o(£(4)),0(f(B)),a(£(C)),0(£(D)) ).

Since the right hand side is equal to ® ¢ x, x, 7 ( XR(A, B,C, D) ) and the right hand side is equal
to XR( f(A), f(B), f(C), f(D) ), the cases where Xy is one of B, C or D follow.

By the preceding discussion, we might as well assume that Xy = A in Case 2. The remainder
of the argument for CASE 2 splits into subcases depending upon whether X is equal to one of
the remaining points.

SUBCASE 2.1. Suppose that A = Xy and B = X;. Then by Theorem V.11 we have
XR(A,B,U,D)  XR(Xo,X1,U,D)
XR(A,B,U,C)  XR(Xo,X1,U,C) "

Note that the cross ratio XR(A, B,U, C') is nonzero because B # C. The assertion in this case
follows from the formula above and the fact that ® is an automorphism.

XR(A,B,C,D) =

SUBCASE 2.2. Suppose that A = Xy and C = X;. Then XR(4, B,C,D) = 1-XR(A,C, B, D),
and hence the assertion in this subcase follows from Subcase 2.1 and the fact that ® is an
automorphism.

SUBCASE 2.3. Suppose that A = X but neither B nor C' is equal to X;. Let
b = XR(Xy,X1,U,B)
¢ = XR(Xo,X1,U,C)
d = XR(Xy,X1,U,D)
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so that homogeneous coordinates (3, £y and &; for the points B, Xy and X; can be chosen such
that 8 = b€y + &1, and hence the corresponding homogeneous coordinates v = c£g + &1 for C
satisfy

v =co + & = (c=b)& + (bo+&) -
Since B # C, it follows that ¢ —b = 0. Therefore homogeneous coordinates § for D are given by

5= dgo + & = T (e— 06 + (60t &).

Therefore we have the identity

d—2b

c—b"

The assertion in this subcase follows from the above formula and the fact that ® is an isomor-
phism. This concludes the proof that ® only depends upon the line L = X X;.

XR(A, B,C,D) =

Proof that the isomorphism ®; = ®; s does not depend upon the choice of the line M. —
Once again, there are two cases.

CASE 1. Suppose we are given two lines M and M’ which have a point in common; we claim
that @ = @y av. Let V be a point in the plane of M and M’ which is not on either line. If
X e M, let X' € M'NVX; then

f(X) e fIM] 0 f(V)F(X)
because f is a collineation. Thus two applications of Theorem 15 imply
XR(A,B,C,D) = XR(A',B',C', D)
XR(f(4), F(B), f(C), f(D)) = XR(f(A), f(B'), {(C"), f(D)) .

On the other hand, we also have
@0 (XR(A,B,C, D)) = XR(f(A), f(B), f(C), f(D)) and
(I)f,M’(XR(Ala B/7 0/7 D/) ) = XR( f(A/)v f(B/)7 f(C/)7 f(D/) ) :
Since every element of F has the form XR(A, B, C, D) for suitable points, the equations above
imply that @7 = & .

CASE 2. Suppose we are given two lines M and M’ which have no points in common; we claim
that ® ¢ = @y av. Let M” be a line joining one point in M to one point in M’. Then two
applications of the first case imply that ®;yr = @ = Oppp. B

The characterization of ® in terms of the cross ratio implies some useful properties of the
construction ® which sends a collineation FP" — EP" to the field isomorphism & : F — E.

THEOREM VL11. If f : P — P’ and f' : P' — P" are collineations of coordinate projective
n-spaces (where n > 2), then ®yp = @ o®s. If f: P — P is the identity, then ®y is the
identity on the underlying field. Finally, if g : P' — P is equal to f~1, then ®, = (<I'f)_1.

Proof. If f is the identity, then we have
@1(XR(A,B,C,D)) = XR(f(A), f(B). f(C), f(D)) = XR(A,B,C,D)
because f(X) = X for all X. If g and f are collineations then

2,0, (XR(A, B,C,D)) = ®,( XR(f(A). f(B). f(C). /(D)) ) =



3. COLLINEATIONS 123

XR(g°f(A),9°f(B),g°f(C),9°f(D)) = @4;(XR(A, B,C,D)) .
To prove that &, = (Qf)_l, note that fof~! = identity and f~'°f = identity combine
with the first two identities to show that the composites ® ;-1 °® and ®y°® ;1 are both identity
maps, and these identities imply that ® -1 = (<I>f)_1.l

Collineations of FP'

Of course, an incidence-theoretic definition of collineations for coordinate projective lines is
meaningless. However, if 1 + 1 # 0 in F, then as in Section V.4 it is possible to defines
collineations of FP! as 1-1 correspondences which preserve harmonic quadruples. With this
definition, an analog of Theorem 10 is valid. Details appear on pages 85-87 of the book by
Bumcrot listed in the bibliography (this is related to the discussion of von Staudt’s Theorem at
the end of Section V.4).

Examples

We have already noted that every invertible (n+1) x (n+1) matrix A over F defines a geometric
symmetry fa of FP", and by a straightforward extension of Exercise V.2.10 the mapping f4
preserves cross ratios; therefore, the automorphism @, is the identity. On the other hand, if x
is an automorphism of IF' as above and g, is defined as at the beginning of this section, then for
all distinct collinear points A, B, C, D in FP" we have

X(XR(AvBa C,D) ) = XR(gX(A),gX(B),gX(C),gX(D))

and therefore ®; = x. In particular, the latter implies the following:

For every field F, every automorphism x of F, and every n > 0, there is a
collineation g from FP" to itself such that ®, = x.H

Later in the section we shall prove a much stronger result of this type.
The Fundamental Theorem of Projective Geometry

Before stating and proving this result, we need to state and prove some variants of standard
results from linear algebra. Let V and W be vector spaces over a field I, and let a be an
automorphism of F. A mapping T : V — V is said to be an a-semilinear transformation if it
satisfies the following conditions:

(1) T(x+y) = T(x)+T(y) forall x, y e V.
(2) T(ex+y) = a(c)T(x) for all x € V and ¢ € F.

If « is the identity mapping, this reduces to the usual definition of a linear transformation.

THEOREM VI.12. Let V, W, F,« be as above. If vy, --- ,v, is a basis for V and wy, -+ ,w, €
W, then there is a unique a-semilinear transformation T : V' — W such that T(v;) = w; for
all 3.
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Proof. Suppose that v € V and that T and S are a-semilinear transformations from V to W
satisfying the conditions of the theorem. Express v as a linear combination of the form ), ¢;v;.
Then we have

T(v) = T(Z cm> =Y ale)T(vi) = > ale)w; =

% 7

Z a(e)S(vy) = S <Z c,-vi) = S(v)
and hence S = T'. Conversely, if v is given as above, then T'(v) = ) ; a(c;)w; is a well-defined
a-semilinear transformation.ll

This result has the following basic consequence:

THEOREM VI.13. In the setting above, the mapping T is 1 — 1 and onto if and only if the
vectors Wi, --- , Wy, form a basis for W. In this case the inverse map T ' is an o~ -semilinear
transformation.

Proof. Since the image of T' is contained in the subspace spanned by the vectors w, it follows
that T" cannot be onto if these vectors do not span W. Conversely, suppose that these vectors do
form a basis. Then by the previous result there is an a~!-semilinear transformation S : W — V
such that S(w;) = wv; for all 4. It follows that S°T is an a~!°a-semilinear (hence linear)
transformation from V to itself which sends v; to v; for all ¢, and hence S°T. Reversing the
roles of V and W and also the roles of S and T in this argument, we conclude similarly that
TS is the identity. Therefore the a-semilinear map S is an inverse to T and the latter is 1-1
and onto.l

If F and n are as in Theorem 12 and T is an invertible a-semilinear transformation from Fn+1:1
to itself, then as in Section 4.3 there is a collineation fr from FP" to itself defined by

fr(X) = T(€)-F
where £ is an arbitrary set of homogeneous coordinates for X; this does not depend upon the
choice of homogeneous coordinates, for if £/ = ¢£ is another set of homogeneous coordinates for
X we have
T(c€) - F = alc) T -F =T F.
The proof that this map defines a collineation proceeds exactly as in the case of linear trans-

formations, the only change being the need to substitute T'(cv) = «(c) - T(v) in place of
T(cv) = c-T(v) when the latter appears.

The Fundamental Theorem of Projective Geometry is a converse to the preceding construction,
and it shows that every collineation of FP" to itself has the form fr for a suitably chosen
invertible a-linear mapping 7" from F? 11 to itself.

THEOREM VI.14. (Fundamental Theorem of Projective Geometry) Let {Xo, --- ,Xpn, A} and
{Yo, --- ,Y,, B} be two sets of (n+ 2) points in FP™ (where n > 2) such that no proper subset
of either is dependent, and let x be an automorphism of F. Then there is a unique collineation
f of FP™ to itself satisfying the following conditions:

(1) f(X;) = Y; for0<i<n.
(ii) f(A) = B.
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(iii) D; = x.

The theorem (with the proof given here) is also valid if n = 1 and 1+ 1 # 0 in F, provided
collineations of FP! are defined in the previously described manner (i.e., preserving harmonic
quadruples).

Proof. EXISTENCE. According to Theorem 8 we can choose homogeneous coordinates & for
X;, m; for V;, a for A, and § for B so that « = ) . & and B = ), n;. The hypotheses
imply that the vectors & and n; form bases for F"+11 and therefore there is an invertible a-
semilinear transformation of the latter such that T'(§;) = n; for all i. Then fr is a collineation
of FP" sending X; to Y; and A to B. In order to compute the automorphism induced by f,
let @1, Q2, @3, Q4 be distinct collinear points with homogeneous coordinates 6; for ; chosen
such that 03 = 61 + 0 and 04 = ¢b1 + O3, where ¢ = XR(Q1,Q2,Q3,Q4). We then have
T(03) = 1(61) +7 (02) and T(04) = x(q) - T'(61) + T(02), so that

<XR(Q1,Q2,Q3,Q4) = X(XR(fr(Qu), fr(Q2), fr(Q3), fr(Q4)) ) -
It follows that ®r, = x.0J

UNIQUENESS. Suppose that f and g are collineations of FP" which satisfy f(X;) = ¢(X;) = Y;
for 0 <i<mn, f(A) = g(A) = B,and &y = &, = x. Then h = g~'°f is a collineation
which satisfies h(X;) = X; for 0 <i <n, h(A) = A, and P}, is the identity. If suffices to show
that a collineation h satisfying these conditions must be the identity.

Let h be a collineation such that @, is the identity, and suppose that h leaves three distinct points
on a line fixed; we claim that h leaves every point on the line fixed. To see this, suppose that
X1, Xy and X3 are distinct collinear points such that h(X;) = X; for all 7, and let Y € X3 Xo.
Then we have

XR( X1, X5, X3,h(Y)) = ®,(XR(X1,X2,X3,Y)) = XR(X1, X, X3,Y)
and hence h(Y) =Y by Theorem V.10.

Now assume that h satisfies the conditions in the first paragraph of this argument. We shall
prove, by induction on r, that h fixes every point in the r-plane Xg --- X,. The statement
is trivially true for » = 0, so assume that it is true for » — 1, where » > 1. By the dimension
formula, the intersection of the subspaces Xg --- X, and AX,;; --- X, is a point which we
shall call B,. In fact, homogeneous coordinates 3, for B, are given by

b= 6+ o+ &
because the right hand side is set of homogeneous coordinates for a point in the intersec-
tion. Since h(X;) = X; and h(A) = A, it follows that h maps the subspaces Xo --- X,
and AX, 411 --- X, into themselves. Thus the intersection of these subspaces (namely, the one
point set {B,}) must be mapped into itself and hence h(B,) = B,.

We claim that h fixes every point on the line X, B, fixed. By hypothesis h(X,) = X, and by the
preceding paragraph h(B,) = B,.. Hence h maps X, B, into itself. Since X, B, and Xy --- X,
are both contained in Xg --- X,, the dimension formula implies that they intersect in a point
W. Since W € Xy --- X,_1, the induction hypothesis implies that h(W) = W. Homogeneous
coordinates w for W are given by

w=70F —& =%+ + &
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and hence the points X, V;. and W are distinct collinear points. Since each is left fixed by h, it
follows that every other point in X, B, is also left fixed by h.

a = b, (since n =1)

Now let Z be any point of Xy --- X, not on either Xg --- X,_1 or X, B,. We claim that
hZ) = Z. Since X, B, and X --- X,_1 are both contained in Xy --- X, the dimension
formula implies that Xy --- X, _1 and the plane ZX, B, intersect in a line we shall call L. The
assumption that Z € Xy --- X,_1 implies that Z ¢ L.

Let M7 and Ms be two distinct lines in Z X, B, containing Z; since there are at least three lines
in the plane ZX, B, containing Z, we may choose M; and M5 such that neither line contains
the point B, in which L meets X, B,; in particular, this means that the intersections of M; with
L and X, B, are distinct points.

Let S; € M; N L, and let D; € My N X, B, (here i =1 or 2). Then h(C;) = C; and h(D;) = D;.
Since the intersections of M; with L and X, B, are distinct points, it follows that h leaves two
distinct points of M; fixed and hence h maps each line M; into itself. Therefore it also follows
that h maps My N My = {Z} into itself, so that h(Z) = Z.

The preceding argument shows that h leaves every point of Xy --- X, fixed, completing the
inductive step of the argument. Therefore, by induction we conclude that h is the identity on
FP" = Xo --- X,,.0

One immediate consequence of the Fundamental Theorem is particularly worth stating at this
point:

THEOREM VI.15. Let f be a collineation of FP", and let ®; = o. Then there is an invertible

a-semilinear transformation T of F"tL1 such that if X € FP™ and & is a set of homogeneous
coordinates for X then f(X) = T(§)-F.
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Proof. Let {Xy, -+ ,X,, A} be a set of of (n + 2) points in FP™ such that no proper subset
is dependent. By the proof of existence in the Fundamental Theorem there is an invertible
a-semilinear transformation 7' such that the associated collineation fr satisfies the following
conditions:

(1) f(X;) = fr(X;) for 0 <i<n.
(i) f(A) = fr(A).

Also, by construction the maps f and fr determine the same automorphism of F. We may now
apply the uniqueness portion of the Fundamental Theorem to conclude that f = fr.H

Definition. A collineation f of FIP" is projective if the associated automorphism ®; is the
identity. Theorem 11 implies that the set of projective collineations is a subgroup — in fact,
a normal subgroup — of the collineation group, and by the previous construction of examples
we know that the quotient of the collineation group by the subgroup of projective collineations
is equal to the automorphism group of F. Further information along these lines is discussed in
Exercise 9 below.H

Special cases

We conclude this section with some remarks on collineations if F is the real or complex numbers.

THEOREM VI1.16. For each N > 2, every collineation of real projective n-space RP™ is projective.

By the previous results of this section, the proof of Theorem 15 reduces to showing the following:

THEOREM VI1.17. The only automorphism of the real numbers is the identity map.

Proof(s). If x is an isomorphism of R, then x(0) = 0 and x(0) = 1. Suppose x(r) = r for
r > 1. Then x(r +1) = x(r)+ x(1) = r+ 1, and hence x agrees with the identity on all
nonnegative integers. If k is a negative integer and k = —m, then

x(k) = x(-=m) = —x(m) = —-m =k
and hence Y is the identity on integers. If r is a rational number, write r = m/n where m is an
integer and n is a positive integer. Then n = rm implies that

m = x(m) = x(nr) = x(n)-x(r) = n-x(r)
which implies that x(r) = m/n = r, and hence we see that x fixes every rational number.

Suppose now that z is an arbitrary nonnegative real number. We claim that x(xz) > 0. Re-
call that > 0 if and only if = y? for some y. Therefore z > 0 and z = y? imply that
x(xz) = x(y)? > 0. Similarly, if a and b are real numbers such that a > b, then

x(a) = x(b) = x(a—=b) =0
implies that x(a) > x(b). Since x is 1-1 it also follows that a > b implies x(a) > x(b).

Finally, suppose that we have an element r € R such that x(r) # r. If x(r) < r, then there
is a rational number ¢ such that x(r) < ¢ < r. But this implies x(r) < x(¢) = ¢, and this
contradicts the conclusion x(r) > x(g) which follows from the previous paragraph. Therefore
x(r) < r is impossible, so that x(r) > r for all real numbers r.
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Now x ! is also an automorphism of R, and if we apply the previous reasoning to this automor-

phism we conclude that x ' () > r for all 7. Since we had previously shown that automorphisms
are strictly increasing functions, if we apply x to the previous inequality we obtain

ro= x°x"'(r) = x(r)

and if we combine this with the final inequality of the preceding paragraph we conclude that
x(r) = r for all real numbers .l

The analog of Theorem 16 does not hold for the complex numbers. In particular, at the beginning
of this section we showed that the map g, of CP" given by conjugating homogeneous coordinates
is collineation that is not projective. Further information on automorphisms of the complex
numbers and their applications to projective geometry appear in Appendix D.

EXERCISES

In the problems below, assume that F is a field and y is an automorphism of F.

1. Let A be an invertible n x n matrix over F, and let f4 be the projective collineation
of FP" defined by A (in other words, if £ are homogeneous coordinates for X, then A - F are
homogeneous coordinates for f4(X)). If H is a hyperplane in FP™ with homogeneous coordinates
6, prove that T[H] has homogeneous coordinates 6 - A~ (compare Exercise V.1.5).

2. In the notation of Exercise 1, suppose that a collineation 7T is defined such that if £ are
homogeneous coordinates for X, then Ax(§) are homogeneous coordinates for T'(X). Express
homogeneous coordinates for T[H] in terms of §, A~! and . You may use the product formula
X(A-B) = x(A) - x(B) for matrix multiplication. Also, recall that x(0) = 0.

3. Suppose that f is a collineation of FIP" with induced automorphism @, and suppose that
Hy, Hs, H3, H, are distinct hyperplanes containing a common (n — 2)-plane. Prove that the
cross ratio formula

®;(XR(Hi, Hy, Hy, Hy)) = XR( f[H1], f[Hs), f[Hz), f[H4))

holds without using Exercise 2.

4. Suppose that T is an invertible y-semilinear transformation of F"*t1L! where n > 1 such
that the associated collineation fr of FP™ is the identity. Prove that 7T is a scalar multiple of
the identity. [Hint: By assumption, for each nonzero vector x there is a nonzero scalar cx such
that T'(x) = cx-x. If ex # ¢y, explain why x and y must be linearly independent. Consider
T(x +y) in this case.]

5. (a) Let T be an invertible y-semilinear transformation of F"™ where n > 1, and let z € F™.
Show that

Gx) = Tkx) + =z
is a geometric symmetry of the affine incidence n-space F". [Hint: Compare this statement to
the examples following Theorem I1.39.]

(b) Prove that G extends to a collineation g of FP™ for which ®, = x; in other words, we have
geJ = J°G on F". [Hint: Compare Exercise IV.4.14.]
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(¢) If n > 2, prove that every geometric symmetry f of F™ is given by a transformation of the
type described in (a). [Hint: By Exercise 2 at the end of Chapter IV, the map f extends to
a collineation g of FP”. Since the collineation leaves the hyperplane at infinity fixed, certain
entries of an (n + 1) X (n + 1) matrix inducing g must vanish. But this implies the matrix has
the form of one constructible by (b).]

(d) Determine whether Aff(F™) is the entire group of geometric symmetries of F™ when F is the
real and complex numbers respectively.

6. Suppose that A is an invertible m X m matrix over a field F such that 1+ 1 # 0 in F. Prove
that F™! contains two vector subspaces W and W_ with the following properties:

(1) Ax = xifxe W, and Ax = —xifxe W_.
(i) Wy + W_ = F™land Wy n W_ = {0}

[Hint: Let W4 be the image of A £+ I. This yields the first part. To prove the rest, use the
identity
I = 3(A+1) — 3(A-1) ]

Definition. An involution of FP™ is a collineation f such that fef is the
identity but f itself is not the identity. If f(X) = X, then X is called a fixed
point of the involution.

7. (a) Let T be an invertible y-semilinear transformation of F"*1! such that the induced
collineation fr of FP" is an involution. Prove that T2 is a scalar multiple of the identity. [Hint:
Use Exercise 4.]

(b) Suppose that T" is an involution of RP™. Prove that 7" is induced by an invertible (n + 1) x
(n + 1) matrix A such that A2 = 1.

(¢) In the previous part, prove that T has no fixed points if A2 = —I. Using Exercise 6, prove
that 7T has fixed points if A2 = 1. [Hint: For the first part, suppose that X is a fixed point with
homogeneous coordinates & such that A& = c¢- ¢ for some real number c. However, A2 = —T
implies that ¢2 = —1.] — NOTATION. An involution is called elliptic if no fixed points exist
and hyperbolic if fixed points exist.

(d) Using Exercise 6, prove that the fixed point set of a hyperbolic involution of RP™ has the
form Q1 U @2, where Q1 and Q)5 are disjoint ni- and no-planes and nqy +ns +1 = n.

8. Suppose that A # B, and that A and B are the only two points of the line AB left fixed by
an involution f of RP™. Prove that XR( A, B,C, f(C)) = —1 for all points C on AB —{A, B}.
[Hint: Find an equation relating XR(A, B,C, f(C')) and XR(A, B, f(C), C)]

9. Let CoLL (FP™) denote the group of all collineations of FP", let Aut(FF) denote the group of
(field) automorphisms of F, and let ® : CoLL (FP™) — Aut(F) denote the homomorphism given
by Theorem VI.10.

(a) Why is the kernel of ® the group ProJ (FP") denote the group of all projective collineations,
and why does this imply that the latter is a normal subgroup of CoLL (FP™)?

(b) Show that CoLL (FP™) contains a subgroup I" such that the restricted homomorphism ®|T" is
the identity, and using this prove that every element of COLL (FP™) is expressible as a product
of an element in PrROJ (FP") with an element in I'. [Hint: Look at the set of all collineations
of the form g, constructed at the top of the second page of this section, where x € Aut(F), and
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show that the set of all such collineations forms a subgroup of COLL (FP™) which is isomorphic
to Aut(F).]

(c¢) Suppose that A is an invertible (n+ 1) X (n+ 1) matrix over F and x is an automorphism of
[F, and let f4 and g, be the collineations of FIP" defined at the beginning of this section. By the
previous parts of this exercise and Theorem 15, we know that g, ° f AO(gX)_l has the form fp for
some invertible (n + 1) x (n + 1) matrix B over F. Prove that we can take B to be the matrix
X(A) obtained by applying x to each entry of A. [Note: As usual, if two invertible matrices are
nonzero scalar multiples of each other then they define the same projective collineation, and in
particular we know that fgp = f.p for all nonzero scalars c; this is why we say that we take B
to be equal to y(A) and not that B is equal to x(A4).]

10. LetFbeafield,let 0 < r < n where n > 2, let @ be an r-plane in FP". Let { X, --- , X, A}
and {Yp, --- ,Y,, B} be two sets of (r 4+ 2) points in @ such that no proper subset of either is
dependent. Then there is a projective collineation f of FP" to itself such that f(X;) = Y for
0<i<rand f(A) = B. [Hint: Let W be the vector subspace of F"*11 such that Q = S (W),
define an invertible linear transformation G on W which passes to a projective collineation of
Q) with the required properties as in the proof of the Fundamental Theorem, extend G to an
invertible linear transformation G of F"*1! and consider the projective collineation associated

to G.]
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4. Order and separation

All of the analytic projective geometry done up to this point is valid for an arbitrary F for
which 1+ 1 # 0. Certainly one would expect than real projective spaces have many properties
not shared by other coordinate projective spaces just as the field of real numbers has many
properties no shared by other fields. The distinguishing features of the real numbers are that it
is an ordered field and is complete with respect to this ordering. In this section we shall discuss
some properties of projective spaces over arbitrary ordered fields and mention properties that
uniquely characterize real projective spaces.

Given points u, v € R", let d(u,v) be the distance from u to v. One characterization of the
statement

y is between x and z

is that it holds if and only if d(x,2z) = d(x,y)+d(y,z). Another more algebraic characterization
follows immediately from this.

THEOREM VI.18. Ifx, y, z € R" are distinct points, then d(x,z) = d(x,y) + d(y,z) holds if
and only if y = tx+ (1 —t)z for some t satisfying 0 < t < 1.

Proof. Recall that d(u,v) is the square root of
(u—v)-(u—v) = [u-v?.

The proof of the Triangle Inequality for inner (or dot) products is a consequence of the Cauchy-
Schwarz inequality
(x-y) (y-2) < |x-y) (y-2)| < [x=y| |y -2

and equality holds in the Triangle Inequality if and only if the end terms of the Cauchy-Schwarz
inequality are equal.? However, the Cauchy-Schwarz inequality states that the middle term and
right hand term are equal if and only if x — y and y — z are linearly dependent. Since both are
nonzero, this means that (y —z) = k(x —y) for some k # 0. On the other hand, the left and
right hand terms are equal if and only if both are nonnegative. Consequently, if the end terms
are equal, then (y —z) = k(x—y) and also k|x —y| > 0. This implies that k& must be positive.
Conversely, if k£ > 0 then the end terms of the Cauchy-Schwarz inequality are equal.

Thus d(x,z) = d(x,y)+ d(y,z) if and only if y — z is a positive multiple of x —y. But if
y—2z = k(x—Yy), then
k 1

Since k£ > 0 implies
k
0 < — <1
k+1
it follows that if d(x,z) = d(x,y) +d(y,z) then y = tx+ (1 — t)z for some ¢ satisfying
0<t<l

Conversely, if y = tx+ (1 — t)z for some ¢ satisfying 0 < ¢ < 1, then
t

m(X—Y).

y—z =

2See pp. 177-178 of Birkhoff and MacLane or pp. 277-278 of Hoffman and Kunze for further details.
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Since t/(1 —t) is positive if 0 < ¢ < 1, it follows that d(x,z) = d(x,y) + d(y,z).l

With this motivation, we define betweenness for arbitrary vector spaces over arbitrary ordered
fields.

Definition. Let F be an ordered field, let V' be a vector space over F, and let x, y, z be
distinct points of V. We shall say that y is between x and z, written B(x,y,z), if there is
some t € F such that 0 <t <1 andy = tx+ (1 —t)z. Frequently we shall also say that the
points x, y, z satisfy the ordering relation B(x,y,z). The closed segment [x;z] consists of x,
z, and all y such that y is between x and z. In Exercise 1 below this is compared to the usual
definition of closed interval in R.

Figure VI.2
The open segment (x;z) consists of all y such that y is between x and z.

The next results show that our definition of betweenness satisfies some properties that are
probably very apparent. However, since we are dealing with a fairly abstract setting, it is
necessary to give rigorous proofs.

THEOREM VI.19. Let F be an ordered field, let V be a vector space over F, and let a, b, c
be distinct vectors in V. If B(a,b,c) is true, then so is B(c,b,a). However, each of the four
statements B(b,a,c), B(c,a,b), B(a,c,b), B(b,c,a) is false.

Proof. By assumption b = ta+ (1—t)c for some ¢ satisfying 0 < ¢ < 1. The latter inequalities
imply 0 < (1 —¢) <1, and sincet = 1 — (1 —¢) it follows that B(c,b,a) is true.

The equation b = ta+ (1 —t)c (where 0 < ¢t < 1) implies that —ta = —b + (1 — t)c, which
in turn means that

t7'b — t7'1—t)c = t7'b + 1 -t Hec.
Therefore a = sb + (1 — s)c then implies s = ¢t ~!. Since 0 < t < 1 implies = > 1, it follows
that B(b, c,a) is false. Furthermore, it also follows that B(a,c,b) is false, for if the latter were
true then by the preceding paragraph the order relation B(b, c,a) would also be true.

Finally, b = ta+ (1 —t)c (where 0 < ¢t < 1) implies that (t — 1)c = ta — b, which in turn
implies that

Now 0 <t < 1 implies t — 1 < 0, so that
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The latter means that B(c, a, b) is false, and as in the previous paragraph it follows that B(a, c, b)
is also false.ll

THEOREM VI1.20. Let F and Vbe as above, and let a and b be distinct vectors in V. Thenc €V
lies on the line ab if and only if one of c =a, ¢ = b, B(a,b,c), B(c,a,b) or B(b,c,a) is true.
Furthermore, these conditions are mutually exclusive.

Proof. We know that ¢ € ab if and only if ¢ = ta+ (1 — ¢)b for some ¢t. We claim the five
conditions are equivalent tot =1,¢t=10,¢ < 0,¢ > 1 and 0 < t < 1 respectively. Thus it will
suffice to verify the following:

(1) B(a,b,c) is true if and only if ¢ = ta+ (1 — ¢)b for some ¢ < 0.
(2) B(c,a,b) is true if and only if ¢ = ta+ (1 —¢)b for some ¢t > 1.
PROOF OF (1). The condition ¢ = ta+ (1 —¢)b with ¢ < 0 is equivalent to
t -1
b = .
1t
The conclusion in this case follows because the map sending ¢ to t/(t — 1) is a 1-1 corre-

spondence from the unbounded set { v € F |u < 0 } to the bounded open interval
{veF|0<v<1}0O

PROOF OF (2). The condition ¢ = ta+ (1 —¢)b with ¢ > 1 is equivalent to

1 1
= - 1--1]b.
a tc+< t>

The conclusion in this case follows because the map sending ¢ to 1/t is a 1-1 correspondence from
the unbounded set { u € F|u > 1} to the bounded open interval {v € F|0 < v < 1}.1

Betweenness and cross ratios

Not surprisingly, there are important relationships between the concept of betweenness and the
notion of cross ratio. Here is the most basic result.

THEOREM VI1.21. Let F be an ordered field, and let J : F™ — FP" be the usual projective extension
mapping. Then three collinear points a, b and ¢ of V' satisfy the order relation B(a,c,b) if and
only if

XR(J(a),J(b),J(c),Lec) < O

where Lo, is the ideal point of the line L containing a, b and c.

Proof. By Theorem V.17, if ¢ = ta+ (1 —t)b then

t—1
XR(J(a),J(b),J(c), Log ) = —
This is negative if 0 < t < 1 because t — 1 < 0 < t. We claim that the cross ratio is positive if
either t <O or¢ > 1. If t > 1, then t — 1 > 0 and therefore the cross ratio is positive. Similarly,

if t <0, then t — 1 <t < 0 implies that the cross ratio is positive.ll

Affine transformations obviously preserve betweenness (see Exercise 10 below). However, if
B(a,b,c) in F* and T is a projective collineation of FP"™ such that the images a’, b’, ¢’ of
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a, b, c under T lie in (the image of) F™, then B(a’,b’,c’) is not necessarily true. Specific
examples are given by projective collineations which interchange a and b, and send c to itself.

If one wants some aspect of order and betweenness which IS preserved by projective collineations,
it is natural to try something involving the cross ratio, and the preceding result may be viewed
as motivation for the following definition and theorem:

Definition. Let F be an ordered field, let V' be a vector space over F, and let a, b, ¢, d be
collinear vectors in V. Then a and b separate ¢ and d if one of {c,d} is between a and b but
the other is not. We shall write this as sep(a,b : ¢,d). It is trivial to see that sep(a,b: c,d) is
equivalent to sep(a,b : d,c).

There is a very simple and important characterization of separation in terms of cross ratios.

THEOREM VI.22. Let F be an ordered field, let V be a vector space over F, and let a, b, ¢, d
be collinear vectors in V. Then sep(a,b : c,d) is true if and only if

(J(a),J(b),J(c),J(d)) < 0.

Proof. Suppose that sep(a,b : c,d) is true. Without loss of generality, we may assume that
B(a,c,b) is true but B(a,d,b) is false (either this holds or else the corresponding statement
with ¢ and d interchanged is true — in the latter case, reverse the roles of the two points). Under
these conditions we have ¢ = ta+ (1 —¢)b where 0 <t < 1landd = sa+ (1 — s)b where
s <0or s> 1. By Theorem V.17 we have

s(1—1)

t(1—s)

The sign of this cross ratio equals the sign of s/(1 — s), and the latter is negative if either s < 0
or s > 1.1

XR(J(a),J(b),J(c),J(d)) =

Suppose that the cross ratio is negative. We need to show that one of s and ¢ satisfies 0 < u < 1
and the other does not. To do this, we eliminate all the other possibilities.

CASE 1. Suppose we have 0 < s,t < 1. Then all the factors of the numerator and denominator
are positive.

CASE 2. Suppose neither satisfies 0 < u < 1. Then the previous argument shows that one of s
and 1 — s is positive and likewise for ¢t and 1 — ¢t. Therefore the formula above implies that the
cross ratio must be positive.ll

We thus make the general definition in FP™ that two points A and B separate two points C
and D on AB if and only if XR(A, B,C, D) < 0. If all four of these points are ordinary, then
Theorem 22 provides a geometrical description of separation. The cases where one point is ideal
can be described using the following two special cases:

(1) sep(J(a),J(b) : 00,J(c)) and sep(J(a),J(b) : J(c),o0) hold if and only if B(a,c,b) is
true (see Theorems V.12 and V.17).

(2) sep(J(a),o0 : J(c),J(d)) and sep( o0, J(a) : J(c),J(d)) hold if and only if B(c,a,d) is
true because

XR(J(a),00 : J(c),J(d)) = XR(J(d),J(c): o0,J(a)) .
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The following observation is an immediate consequence of the definitions:

Let A, B, C, D be distinct collinear points in FP", and let T" be a projective
collineation of FP". Then sep(A, B : C, D) is true if and only if sep( T (A), T(B) :
T(C),T(D)) is true.®

A comprehensive visualization of separation for points on a real projective line may be given as
follows:

As indicated in the picture below, there is a standard 1-1 correspondence (stereographic pro-
jection) between the points of RP! and the points on the circle I in R? which is tangent to the
x-axis at the origin and whose center is (0, %) An ordinary point with standard affine coordinate
u is sent to the intersection of I' with the line joining (u,0) to (0,1), and the point at infinity is
sent to (0,1). It is straightforward to check that this map o defines a 1-1 correspondence from
RP! to I3

(0. 1)

x = axis

(. 0)

Figure VI.3

With respect to this correspondence, separation has the following interpretation. If a, b € RP!,
then T' — {o(a),o(b)} consists of two open arcs, and separation means that each arc contains
exactly one of the points {c, d}.

We now summarize some basic properties of separation by means of the following theorem:

THEOREM VI1.23. IfF is an ordered field and A, B, C, D are distinct collinear points of FP",
then the following hold:

(a) sep(A, B : C, D) implies sep(A, B : D,C') and sep(C, D : A, B).

(b) One and only one of the relations sep(A, B : C, D), sep(B,C : D, A), or and sep(C, A : B, D)
18 true.

(c) If sep(A, B : C, D) and sep(B,C : D, E) are true, then so is sep(C,D : E, A).
(d) If L is a line meeting AB, Y is a coplanar point on neither line, and X' is the intersection

point of PX and L for X = A, B, C, D, then sep(A, B : C, D) implies sep(A’, B' : C', D’).

3If we rotate the above picture about the y-axis in R® we obtain a similar 1-1 correspondence between the
complex projective line CP* and the sphere of diameter 1 tangent to the zz-plane at the origin.
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The proof is straightforward and is left as an exercise.ll

One reason for listing the preceding four properties is that they come close to providing a
complete characterization of separation.

THEOREM VI.24. Let P be a Desarguian projective n-space, where n > 2, and suppose that P
has an abstract notion of separation X(--- ,---||-++ ,--+) which satisfies the four properties in
the previous theorem. Assume that some (hence every) line contains at least four points. Then
P is isomorphic to FP™, where F is an ordered skew-field, and the ordering of F has the property
that sep(A, B : C, D) is true if and only if S(--- ,---||--- ,--+) is.

In principle, this result is proved on pages 239-244 of Artzy, Linear Geometry. We say “in
principle” because the result is only stated for projective planes in which Pappus’ Theorem
holds. However, the latter is not used explicitly in the argument on these pages,? and the
restriction to planes is easily removed.

We would need only one more axiom to give a completely synthetic characterization of the real
projective plane (and similarly for higher dimensional real projective spaces). Fairly readable
formulations of the required continuity condition (as it is called) may be found in Coxeter, The
Real Projective Plane, pages 161-162, and Artzy (op. cit.), page 244.

EXERCISES

Throughout these exercises F denotes and ordered field, and the ordering is given
by the usual symbolism

1. In the real numbers R, prove that the closed interval [a,b], consisting of all x such that
a <z <b,is equal to the closed segment [a;b] joining a to b as defined here, and likewise for
their open analogs (a,b) and (a;b). [Hint: Ifa <c<bandt = (b—a)/(c— a), consider
ta + (1—t)b. If ¢ = ta+ (1 —t)bfor 0 <t <1, why does this and a < b imply that a < ¢ < b7?]

Definition. A subset K C F" is convex if x and y in K imply that the closed
segment [x;y] is contained in K. — In physical terms for, say, R? or R3, this
means that K has “no dents or holes.”

2. Prove that the following subsets of F are convex for an arbitrary b € F:
(1) Theset { z € F |z > b}.

(77) Theset { x € F |z < b}.

(17i) Theset { z € F |z > b}.

(i) Theset { x € F |z < b}.

3. Prove that the intersection of an arbitrary family of convex subsets of F" is also convex.
4. Let f:F" — F be a linear function of the form f(x) = >, a;jz; — b.

4An explicit recognition that Pappus’ Theorem is unnecessary appears in Forder, Foundations of Euclidean
Geometry, pp. 196197 and 203-206.
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(a) Prove that for all ¢ € F we have f(tx + (1—t)y) = t- f(x) + (1—1t)f(y).
(b) Prove that if K C F™ is convex, then so is its image f[K].

(¢) Prove that if C C F is convex, then so is its inverse image f~![C].

5. Let f be as in Exercise 4. Then the subsets of F” on which f is positive and negative are
called the (two) sides of the hyperplane H; defined by f or the (two) half-spaces determined by
the hyperplane Hy. Prove that each half-space is (nonempty and) convex, and if we have points
x and y in F" such that x lies on one of the half-spaces and y lies on the other, then the closed
segment [x;y] contains a point of the hyperplane H; defined by the equation f(z) = 0. —
This statement is called the hyperplane separation property for F™.

Za]xj > b

Zajxj:b Zajxj{b

Figure VI.4

Also, explain why the hyperplane and its two sides are three pairwise disjoint subsets whose
union is all of F".

6. Formulate and prove a similar result to Exercise 5 for the set of all points in a k-plane
M C F™ which are not in a (k — 1)-plane Q C M.

7. Suppose that x, y, z are noncollinear points in F2. Define the classical triangle Axyz
to be the union of the closed segments [x;y], [x;z], and [y;z]. Prove the Theorem of Pasch:®
A line L containing a point w in an open side (x;y) of A°xyz either passes through z or else
meets one of the other open sides [x;z] or [x;z]. [Hint: Explain why x and y are on opposite
sides of the L through w. What can be said about z if it does not lie on this line?]

y

Figure V1.5

SMORITZ PASCH (1843-1930) is mainly known for his work on the foundations of geometry, and especially for
recognizing the logical deficiencies in Euclid’s Elements and developing logically rigorous methods for addressing
such issues. The theorem in the exercise is one example of a geometrical result that is tacitly assumed — but not
proved — in the Elements.
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7. Ifx, y, z, w are distinct points in F? such that no three are noncollinear, then the classical
quadrilateral [(1° xyzw is the set

Byl U lysz] U [zw] U [wix].

It is called a convex quadrilateral if the following conditions hold:
x and y lie on the same side of zw .

y and z lie on the same side of wx.

z and w lie on the same side of xy .
w and x lie on the same side of yz.

The diagonals of a classical quadrilateral ¢ xyzw are the segments [x;z] and [y; w|. Prove that
the diagonals of a convex quadrilateral have a point in common. Why must this point lie on
(x2) N (y;w)?

Figure VI.6

8. Give an explicit formula for the map defined by Figure VI.3 and the accompanying discus-
sion.

9. Prove Theorem 24.

10. Suppose that x, y, z are points in F" such that B(x,y,z) is true and T" € Aff(F"). Prove
that B(T(x),T(y),T(z)) is also true.

11. In the notation of Exercise 5, let y1, --- ,y, be an affine basis for the hyperplane H under
consideration, and let yo ¢ H. Prove that x € F" lies on the same side of H as yq if the 0
barycentric coordinate of x with respect to yo, y1, -+ ,¥n (an affine basis for F") is positive.
What is the condition for x and yg to lie on opposite sides?



