A FEW ADDITIONAL EXERCISES

Here are some miscellaneous exercises that were not included in the course materials but might be useful to study in connection with the qualifying exam.

1. Prove that $A = ([-1,1] \times \{0\}) \cup (\{-1,1\} \times [0,1])$ is a strong deformation retract of $X = [-1,1] \times [0,1]$. [*Hint:* Let p be the point (0,2). For each $v = (x,y) \in X$ show that there is a unique point $a \in A$ such that a = p + t(v - p) for some t > 0. Show that t and hence a are continuous functions of v; the formula for t(v) is given by two different expressions depending on whether $2|x| + y \leq 2$ or $2|x| + y \geq 2$.]

2. Suppose that G is a locally arcwise connected Hausdorff topological group and that the identity has a simply connected neighborhood.

- (i) Prove that the universal covering space \widetilde{G} of G is a topological group such that the projection $p: \widetilde{G} \to G$ is a continuous open homomorphism.
- (*ii*) Let H be a connected topological group, and let A be a discrete normal subgroup of H. Prove that A is contained in the center of H.
- (*iii*) Show that the kernel of the map p in (*i*) is a central subgroup if G is connected.

3. Let X be a connected, locally arcwise connected, semilocally simply connected, second countable (Hausdorff) space, and let $x \in X$. Prove that $\pi_1(X, x)$ is countable, and prove that every connected covering space of X is second countable.

4. (i) Let $p: E \to X$ be a covering space projection, where X is connected, locally arcwise connected, semilocally simply connected, and separable metric. Prove that E is metrizable.

(*ii*) Let $p: E \to X$ be a covering space projection, where X is metrizable. Prove that E is metrizable if and only if it is paracompact.

5.* Suppose that G is a Hausdorff topological group such that some neighborhood of the identity is metrizable. Prove that G is metrizable if and only if G is paracompact.