
Commentaries for Mathematics 205B

The main reference for this course is the following text:

J. R. Munkres. Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2.

This following book will serve as a secondary textbook for the course:

A. Hatcher. Algebraic Topology (Third Paperback Printing), Cambridge University

Press, New York NY, 2002. ISBN: 0–521–79540–0.

This book can be legally downloaded from the Internet at no cost for personal use, and here is the
link to the online version:

www.math.cornell.edu/∼hatcher/AT/ATpage.html
This is the second course in the graduate level topology sequence. The book by Munkres is

the default text for the first course, and an online set of lecture notes for the course material is
available at the following address:

http://math.ucr.edu/∼res/gentopnotes2005.pdf
The directory containing this file (http://math.ucr.edu/∼res/math205A) also contains other

files that might be useful for review as needed.

This commentary is a collection of remarks on various points related to the textbook sections
that will be covered. In some cases the discussions will be very brief, but in others there will be
alternate treatments of certain topics.

Munkres, Section 51

The notion of homotopy is central to this course. There are several reasons why it has
become so important to topology. First of all, the concept yields effective methods for studying
one of the most basic problems in topology; namely, determining whether or not two spaces are
homeomorphic. Various considerations during the first two decades of the 20th century showed that
it was useful to introduce a weaker relationship called homotopy equivalence; in many situations
there are good algebraic criteria for showing that certain pairs of spaces cannot be homotopy
equivalent, and it follows that the spaces also cannot be homeomorphic. Furthermore, homotopy
provides an extremely useful means for sorting the continuous mappings from one given space to
another; for many of the most interesting examples of topological spaces, these sets of continuous
mappings are uncountable topological spaces. In many contexts it is reasonable to think of two
maps as being somehow equivalent if they are sufficiently close to each other in an appropriate
sense, and the notion of homotopy may be viewed as one effective method for making this intuitive
notion precise, yielding an equivalence relation (See Munkres, Lemma 51.1, p. 324) under which

(i) sufficiently close maps of suitably well-behaved spaces are homotopic,
(ii) the equivalence relation on the uncountable spaces of continuous functions yields countable

sets of equivalence classes for such spaces.
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The basic definitions of homotopies appear on page 323 of Munkres, and Lemma 51.1 on page
324 shows that this concept defines an equivalence relation on the set of continuous mappings from
one space X to another space Y . Following standard usage, we shall denote the set of homotopy
classes of maps from one space X to another space Y by [X,Y ].

Qualitative results on homotopy classes

In this discussion we shall assume that X is a compact subset of some Euclidean space Rm

and Y is an open subset of some (possibly different) Euclidean space Rn.

PROPOSITION. Let X and Y be as above, and let f : X → Y be continuous. Then there is
some ε > 0 such that if g : X → Y is a continuous mapping satisfying d(f, g) < ε (with respect to
the uniform metric), then f and g are homotopic.

Proof. We know that the image f [X] is a compact subset of Y . For each z ∈ f [X] there is some
εz > 0 such that the open disk Wz of radius εz centered at z is contained in Y . Let ε be a Lebesgue
number for the open covering of f [X] by the sets Wz. It follows that if z ∈ f [X] and d(z, y) < ε,
then the entire closed line segment joining z to y is contained in Y . Hence if g : X → Y is a
continuous mapping satisfying d(f, g) < ε (with respect to the uniform metric), then the image of
the straight line homotopy H(x, t) = t g(x) + (1− t) f(x) is contained in Y . But this means that
f and g are homotopic as mappings from X to Y .

In principle, the preceding result shows that the homotopy relation is the equivalence relation
generated by the binary relation f ∼ g if and only if for each x ∈ X the line segment joining f(x)
to g(x) lies entirely inside the open set Y . The next result shows that one has only countably many
homotopy equivalence classes of mappings for X and Y as above.

PROPOSITION. Let X and Y be as above. Then the set [X,Y ] of homotopy classes of contin-
uous mappings from X to Y is a countable set.

Proof. We shall use the Stone-Weierstrass Approximation Theorem (Rudin, Principles of Math-
ematical Analysis, Theorem 7.32, pp. 162–164) and the preceding result. More precisely, we shall
prove that each continuous mapping f is homotopic to a mapping g whose coordinate functions are
all given by polynomials in m variables. Since the set of all such maps is countable, it follows that
the collection of all homotopy classes must also be countable.

Let C(X) denote the space of all continuous real valued functions on X; then the Stone-
Weierstrass Theorem implies that the subalgebra A of all (restrictions of) polynomial functions on
X is a dense subset. Given a continuous function f : X → Y , denote its coordinate functions by
fj for 1 ≤ j ≤ n.

By the previous result there is some ε > 0 such that d(f, g) < ε implies that f and g are homo-
topic, and in fact by the construction it follows that Y contains all points z such that d( f(x), z) < ε
for some x ∈ X. By the observations of the preceding paragraph there are polynomial functions gj

such that

d(fj , gj) <
ε√
n
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for each j, and it follows that the continuous function g with coordinate functions gj maps X into
U . Therefore we know that f is homotopic to a mapping g whose coordinate functions are given
by polynomials.

To complete the argument, we need to show that g is homotopic to a mapping h whose
coordinate functions are given by polynomials with rational coefficients. Let δ > 0 be the number
as in the preceding proposition, so that d(g, h) < δ implies that G and h are homotopic and if
y ∈ Rn satisfies d(y, f(x) ) < δ for some x then y ∈ Y .

Let d be the maximum degree of the coordinate functions gj for g; then each gj is uniquely
expressible as a linear combination of monomials

∑
α bα,j x

α, where xα runs through all monomials
that are products of the fundamental indeterminates x1, · · · , xm such that deg(xα) ≤ d. Let A be
the number of such monomials with degree ≤ d, let Mα be the maximum of the monomial function
xα on X, and let M be the largest of these maxima Mα (where again the degree is ≤ d).

If we now choose rational numbers cα,j such that

|cα,j − bα,j | <
δ

A ·M · √n

for all α and j, and we take h =
∑

α cα x
α, then a standard estimation argument as in 205A or

real analysis shows that the rational polynomial functions hj satisfy

d(hj , gj) <
δ√
n

which in turn implies that d(g, h) < δ, so that h maps X into Y and g and h are homotopic as
continuous mappings from X to Y .

A simple variant of the preceding result is often useful. Given a topological space Y and a
space U containing Y as a subspace, we shall say that Y is a retract of U if there exists a continuous
mapping r : U → Y such that r|Y is the identity. If we let j denote the inclusion of Y in U , the
restriction condition can be rewritten as r oj = idY ; in other words, the mapping r is a left inverse
to j. As in linear algebra, one-sided inverses to continuous maps are not unique; in topology it is
customary to use the term retraction to denote a left inverse maps for a retract.

COROLLARY. Suppose that X is a compact subset of some Euclidean space and Y is a retract
of an open subset of some Euclidean space. Then the set of homotopy classes [X,Y ] is countable.

Proof. Let j : Y → U be the inclusion of Y into the open subset U in some Euclidean space.
Since [X,U ] is countable, it suffices to show that if f and g are continuous mappings from X to Y
such that j of is homotopic to j og, then f is homotopic to g. This is less trivial than it may seem;
later on we shall see that if i : Y → Z is an arbitrary inclusion map then it is possible to have
i of ' i og even when f and g are not homotopic.

Suppose that j of ' j og, and let H be a homotopy from the first map to the second. Let
r : U → Y be a retraction. Then the composite r oH is a homotopy from r oj of to r oj og. Since
r oj is the identity, the latter mappings are merely f and g respectively, and therefore r oH defines
a homotopy from f to g. By the comments in the preceding paragraph, this completes the proof.
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SOME STANDARD TOPOLOGICAL SPACES. The standard unit n-disk Dn is the set of all
points x ∈ Rn such that |x| ≤ 1, and the standard n-sphere Sn is the set of all points x ∈ Rn+1

such that |x| = 1; if n = 2, then S1 is just the unit circle in the plane, and if n = 1 then D1 is just
the closed interval [−1, 1 ].

We shall conclude this discussion with two results on homotopy classes of maps into these
standard spaces.

PROPOSITION. If X is an arbitrary topological space and Dn is as above, then the set of
homotopy classes [X,Dn] consists of a single point.

Proof. It will suffice to show that every mapping from X to Dn is homotopic to the constant
map whose value at each point is the zero vector. Let f be an arbitrary continuous mapping. By
convexity we know that the closed line segment joining f(x) to the zero vector lies in Dn, and
therefore the image of the straight line homotopy H(x, t) = (1 − t) f(x) lies inside Dn, so that it
defines a homotopy from f to the zero map.

Complement. The same method immediately yields similar conclusions if Dn is replaced by
an arbitrary convex subset of some Euclidean space (or Banach space, or real topological vector
space).

Our result for spheres is weaker but still very illuminating.

PROPOSITION. If X is a compact subset of some Euclidean space and Sn is as above, then
the set of homotopy classes [X,Sn] is countable.

Proof. We only need to check that Sn is a retract of an open subset of Rn+1. But if U =
Rn+1 − {0}, then the map r : U → Sn sending x to |x|−1 x is a continuous map whose restriction
to Sn is the identity.

Section 54 of Munkres contains a proof that [S1, S1] is countably infinite, so in general the
cardinality estimate in the proposition is the best possible.

Operations on curves

Given two continuous curves f and g from the unit interval [0, 1] → X for some space X
such that f(1) = g(0), a binary operation called the product is defined on page 326 of Munkres.
Intuitively speaking, if we are given curves f and g, then this operation describes the curve which
behaves like f on the left hand half of the interval and which behaves like g on the right hand half.
One can also think of this as “stringing together” the two curves, and for this reason the operation
is also known as concatenation. Frequently it is also written using “+” rather than “∗”. On page
327, an construction assigning to each curve a reverse curve is also described. Intuitively speaking,
this corresponds to a reparametrization going backwards from the final point to the initial point,
and this construction on a curve f is often denoted by −f .

Two simple motivations for the preceding notation can be described using line integrals. Sup-
pose that α and β are piecewise smooth curves into an open subset of some Euclidean space such
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that α(1) = β(0), and suppose that ρ is a continuous function defined on that open subset. Then
the line integrals of ρ along α, β, α+ β, and −α can all be defined, and we have

∫

α+β

ρ(s) ds =

∫

α

ρ(s) ds +

∫

β

ρ(s) ds ,

∫

−α

ρ(s) ds = −
∫

α

ρ(s) ds .

POTENTIAL SOURCES OF DIFFICULTIES. Although the plus and minus notation for curves has
some advantages, it also has some disadvantages that must be recognized. Ordinarily, when one uses
a plus sign to denote a binary operation, the latter is commutative and associative, and moreover
expressions like α + (−α) turn out to be trivial. These are not the case for our constructions on
curves. However, as noted in Munkres, one does have associativity up to homotopy, and expressions
of the form α+(−α) are trivial up to homotopy; on the other hand, one does not have commutativity
up to homotopy, even if α(0) = β(1) and α(1) = β(0) so that both α+β and β+α can be constructed.
It will take some time for us to describe examples illustrating the lack of commutativity up to
homotopy, but eventually we shall do so.

Munkres, Section 52

This is much shorter than the commentary for the previous section.

The higher homotopy groups πn(X,x0) mentioned in Munkres are defined and discussed in
the first few pages of Section 4.1 in Hatcher’s book; the material up to Proposition 4.1 on page 342
does not require any background aside from the sections in Munkres covered thus far. As noted on
page 340 of Hatcher, the groups πn(X,x0) are abelian for all n ≥ 2; in contrast, we shall eventually
prove that pi1(X,x0) is not necessarily abelian.

Munkres concludes this section by showing that a homomorphism of topological spaces defines
an isomorphism of fundamental groups. In fact, the fundamental groups of (X,x) and (Y, y)
are isomorphic even if the two pointed spaces are related by the weaker concept of homotopy
equivalence (see Munkres, Theorem 58.7, pp. 364–365). A homotopy equivalence of pointed spaces
is a basepoint preserving map f : (X,x) → (Y, y) for which there is a homotopy inverse g :
(Y, y) → (X,x) such that g of is basepoint preservingly homotopic to the identity on X and f og
is basepoint preservingly homotopic to the identity on Y ; a homeomorphism is automatically a
homotopy equivalence, for we may take g to be f−1 and the composites will be homotopic to the
identity mappings because they are in fact equal to identity mappings.

Similarly, one can define homotopy equivalences for topological spaces without basepoint, and
using Exercise 1 on page 330 of Munkres we shall prove the following result(s).

THEOREM. If f : Y → Z is a homotopy equivalence and X is an arbitrary topological space,
then f defines an isomorphism from [X,Y ] to [X,Z]. A similar result holds for basepoint preserving
homotopy equivalences of pointed topological spaces.

The proof of this result will be a simple consequence of the following observation, which turns
out to be a special case of some far-reaching general phenomena.
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PROPOSITION. Let X,Y,Z be topological spaces, and let f : Y → Z be continuous. Then
there is a well-defined mapping of homotopy classes f∗ : [X,Y ] → [X,Z] such that if v ∈ [X,Y ]
is represented by the function h, then f∗(v) is represented by the function f oh. Furthermore, this
construction has the following properties:

(i) If F is homotopic to f , then F∗ = f∗.

(ii) If f is the identity mapping on Y , then f∗ is the identity mapping on [X,Y ].

(iii) If g : Y → Z is another continuous mapping, then (g of)∗ = g∗ of∗.

Similar results hold for basepoint preserving mappings of pointed spaces.

Proof. We shall only work the case of ordinary (unpointed spaces). The argument in the
pointed case is similar; it requires an analog of the exercise in Munkres for pointed spaces, but it
is straightforward to show that such an analog is valid.

Throughout the discussion below, v will denote an element of [X,Y ] and the notation v = [h]
will indicated that h is a representative for the equivalence class v.

The main point needed to justify the definition of f∗ is to show that the construction f∗(v) does
not depend upon the choice of function representing v. In other words, if h and h′ are homotopic,
we need to know that f oh is homotopic to f oh′; but this follows from the exercise in Munkres.

Property (i) also follows directly from the exercise in Munkres, and Property (ii) merely reflects
the identity chain

v = [h] = [idY
oh] = (idY )∗[h] = (idY )∗(v) .

Finally, Property (iii) follows from another simple chain of identities:

(g of)∗(v) = [g of oh] = g∗([f oh]) = g∗
(
f∗(v)

)
= g∗ of∗(v) .

Proof of Theorem. Let v = [h] as in the proposition, and likewise let w = [k] ∈ [X,Z]. By
Properties (i)− (iii) in the preceding proposition we have

g∗ of∗(v) = (g of)∗(v) = (idY )∗(v) = v

and similarly we have

f∗ og∗(w) = (f og)∗(w) = (idZ)∗(w) = w

so that g∗ of∗ is the identity on [X,Y ] and f∗ og∗ is the identity on [X,Z]. But these conditions
mean that f∗ and g∗ are inverse functions to each other, and hence they are both isomorphisms.

There are similar dual results which show that [X,Y ] does not change if we replace X be a
space that it is homotopy equivalent to X. We shall merely state the results and leave the details
to the reader as exercises.

THEOREM. If g : W → X is a homotopy equivalence and Y is an arbitrary topological space,
then f defines an isomorphism from [X,Y ] to [W,Y ]. A similar result holds for basepoint preserving
homotopy equivalences of pointed topological spaces.
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Here is the corresponding dual result which plays the key role in proving the dual theorem.

PROPOSITION. Let W,X, Y be topological spaces, and let g : W → X be continuous. Then
there is a well-defined mapping of homotopy classes g∗ : [X,Y ] → [W,Y ] such that if v ∈ [X,Y ]
is represented by the function h, then g∗(v) is represented by the function h og. Furthermore, this
construction has the following properties:

(i) If G is homotopic to g, then G∗ = g∗.

(ii) If g is the identity mapping on X, then g∗ is the identity mapping on [X,Y ].

(iii) If f : V →W is another continuous mapping, then (f og)∗ = g∗ of∗.

Similar results hold for basepoint preserving mappings of pointed spaces.

Munkres, Section 53

The first paragraph of this section of the text mentions two areas of mathematics in which
covering spaces play an important role; there are also other areas outside of topology, including the
theory of Lie groups and differential geometry. Analogs of covering spaces also arise in algebraic
geometry.

IMPORTANT. Even though the word “covering” appears in the phrases “open covering” and
“covering spaces,” there is no direct connection between the usages; however, in practice
this ambiguity usually does not cause any difficulties.

Background material

It is useful to introduce a simple, fundamental construction on topological spaces that does
not receive much attention in standard textbooks but nevertheless plays a key role in the subject
itself. This is the disjoint union construction, which is developed in Section V.2 of the online
notes for 205A:

http://math.ucr.edu/∼res/gentopnotes2005.pdf
Given a collection indexed of topological spaces Xα, the disjoint union qα Xα is a space which

is essentially the union of pairwise disjoint copies of the spaces Xα such that each such subset is
both open and closed in qα Xα. If the spaces Xα are all the same space X and Λ is the indexing
set, then the disjoint union is just the product of X with Λ, where Λ is taken to have the discrete
topology. There are also numerous exercises on disjoint unions in the file

http://math.ucr.edu/∼res/gentopexercises2005.pdf
and solutions appear in the files solutions∗.pdf, where ∗ = 4 or 5.

It might also be helpful to look at Section V.1 of the previously cited notes. This develops the
notion of quotient topology in a manner slightly different from that of Munkres, and the approach
in those note will probably be used at various points throughout the present course.
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Examples of covering spaces

We shall now give some additional examples of covering space projections (= covering maps
as defined in Munkres).

THE REAL PROJECTIVE PLANE. This space is denoted by RP2, and two equivalent constructions
of it as a quotient space are described in Unit V and the accompanying exercises for the online
205A notes cited earlier. For our purposes here, it is convenient to think of RP2 as the quotient of
S2 by the equivalence relation which identifies x and y if and only if one of these unit vectors is ± 1
times the other. We claim that the quotient map from S2 to RP2 is a covering space projection. It
is possible to prove this directly (see Theorem 60.3 on page 372 of Munkres), but it will ultimately
be more efficient to prove a general result which will yield larger classes of examples.

Unfortunately, we shall need to introduce some notation. The notion of a group action on a
topological space is defined in Exercise 8 on page 199 of Munkres. For our purposes it will suffice
to take a group and to view it as topological groups with respect to the discrete topology. If G is
such a group and X is a topological space, the group action itself is given by a continuous mapping
Φ : G ×X → X, with Φ(g, x) usually abbreviated to g · x or gx, such that 1 · x = x for all x and
(gh) · x = g · (h · x) for all g, h and x. One can then define an equivalence relation on X by
stipulating that y ∼ x if and only if y = g · x for some g ∈ G, and the quotient space with respect
to this relation is called the orbit space of the group action and written X/G. By the cited exercise
in Munkres, this space is Hausdorff if X is.

If we are given a group action as above and A is a subset of X, then for a given g ∈ G it is
customary to let g ·A (the translate of A by g) be the set Φ[ {g} ×A ]; this is the set of all points
expressible as g · a for the fixed g and some a ∈ A.

Definition. We shall say that a group action Φ as above is a free action (or G acts freely) if
for every x ∈ X the only solution to the equation g · x = x is the trivial solutions for which g = 1.
— If X = S2 as above and G is the order two subgroup {± 1} of the real numbers (with respect to
multiplication), then scalar multiplication defines a free action of G on S2, and the quotient space
is just RP2. Of course, there are also similar examples for which 2 is replaced by an arbitrary
positive integer n, and in this case the quotient space Sn/{± 1} is called real projective n-space.

The next result implies that the orbit space projections Sn → RPn are covering space projec-
tions.

THEOREM. Let G be a finite group which acts freely on the Hausdorff topological space X,
and let π : X → X/G denote the orbit space projection. Then π is a covering space projection.

Proof. Let x ∈ X be arbitrary, and let g 6= 1 in G. Then there are open neighborhoods U0(g)
of x and V0(g) of g · x that are disjoint. If we let W (g) = U(g) ∩ g−1 · V (g) is another open set
containing x, while g ·W (g) is an open set containing g · x, and we have W (g) ∩ g ·W (g) = ∅. Let

W =
⋂

h6=1

W (h)

so that W is an open set containing x.

We claim that if g1 6= g2, then g1 ·W ∩ g2 ∩W = ∅. If we know this, then it will follow
immediately that π[W ] is an open set in X/G whose inverse image is the open subset of X given
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by ∪g g ·W . This and the definition of the quotient topology imply that π[W ] is an evenly covered
open neighborhood of x, and therefore it will follow that π is a covering space projection.

Thus it remains to prove the statement in the first sentence of the preceding paragraph. Note
first that it will suffice to prove this in the special case where g1 = 1; assuming we know this, in
the general case we then have

g1 ·W ∩ g2 ·W = g1
(
W ∩ (g−1

1 g2) ·W
)

and the coefficient of g1 on the right hand side is empty by the special case when g1 = 1 and the
fact that g1 6= g2 implies 1 6= g−1

1 · g2. — But if g 6= 1 then we have W ∩ g ·W ⊂W (g) ∩ g ·W (g),
and we know that the latter is empty by construction. Therefore W ∩ g ·W = ∅, and as noted
before this completes the proof.

ANOTHER EXAMPLE. Define an action of the finite group Z2 on the torus T 2 = S1 × S1 so that
the nontrivial element T ∈ Z2 satisfies T · (z, w) = (−z, w) where S1 is viewed as the set of unit
complex numbers and the bar denotes conjugation. This is a free action because T (z, w) = (z, w)
would imply z = −z, and we know this is impossible over the complex numbers. In this case the
quotient space is the Klein bottle.

STILL MORE EXAMPLES. Let D denote either the complex numbers or the quaternions, let d be the
dimension of D as a real vector space, and let G be a finite subgroup of the group Sdm−1 of elements
of D with unit length. For example, if D = C (the complex numbers), then G can be a cyclic group
of arbitrary order, while if D is the quaternions then one also has some nonabelian possibilities,
most notably the quaternion group of order 8 whose elements are given by ± 1, ± i, ± j, and ±k.
If D = C and m > 1, then the quotient spaces S2m−1/Zq (for q > 1) are the objects known as
(simple) lens spaces (sometimes the case q = 2 is excluded because that quotient is the previously
described real projective space); the reason for assuming m > 1 is that the corresponding quotient
space for S1 is homeomorphic to S1. If D is the quaternions, G is the nonabelian quaternion group
of order 8 described above and m = 1, then the space S3/G is called the 3-dimensional quaternionic
space form associated to the group G.

In all examples of this type, for each point y in X/G the inverse image of {y} in X consists of
|G| points, where |G| is the order of G.

We shall compute the fundamental groups of these examples later in the course.

Composites of covering space projections

Exercise 4 (Munkres, p. 341) shows that under suitable restrictions the composite of two
covering space projections is also a covering space projections. However, in general this is not
necessarily true, and here is an example: Let X be a connected, locally arcwise connected space,
and let p : E → X be a connected covering map that is nontrivial (not a homeomorphism). Let
Y = X×X×X× ... be the countably infinite product of X with itself (with the product topology),
let En denote the product of n copies of E with itself, and for an arbitrary space Y let Yn = En×Y .
Define pn : Yn → Y by

(e1, ... en;x1, x2, ...)→ (p(e1), ... p(en);x1, x2, ...)
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Then each map pn is a covering map. Next, let Z̃ = qn≥1 Yn and let Z be the countably infinite

sum of Y with itself. Let q = qn pn : Z̃ → Z and let r : Z → Y be the obvious projection. Then r
and q are covering maps but that the composite rq is not a covering map.

The proof is only moderately difficult, but it is also a bit lengthy and requires input involving
the product topology for infinite products, and therefore the proof will be left as an exercise [Hint:

It suffices to show that basic open sets in the product topology are not evenly covered]. Another
property involving covering spaces and composites appears in the first additional exercise for this
section, and in a subsequent section we shall give yet another exercise with a sufficient condition
under which the composite of two covering space projections is also a covering space projection.

Munkres, Section 54

DEFAULT HYPOTHESIS. From this point on, we shall assume that all spaces are Hausdorff and
locally path connected unless explicitly stated otherwise.

One reason for concentrating on the proof that π1(S
1, z0) ∼= Z is that the methods have far-

reaching generalizations. This might not be apparent from the treatment in Munkres, so we shall
indicated how the methods yield computations for the fundamental groups of many other spaces
and show that one can obtain many different groups; in fact, every group can be realized as the
fundamental group of some arcwise connected topological space, and for certain types of groups
one can say more about the types of spaces that can realize them. In this commentary we shall
show that every finitely generated abelian group is the fundamental group of a compact topological
manifold (Hausdorff and every point has an open neighborhood that is homeomorphic to an open
subset of some Rn), and there are compact topological manifolds whose fundamental groups are
nonabelian (see Section 36 and pp. 316–318 of Munkres for the definitions and basic properties of
such spaces).

The first step is an abstraction of the proof that π1(S
1, z0) is infinite cyclic. This will use

the notion of covering transformations which is defined on page 487 of Munkres; specifically,
if we are given a covering space projection p : E → B, then the covering transformations are all
homeomorphisms h : E → E such that p oh = p, and the set Γ(p) of all covering transformations
turns out to be a group with respect to composition of functions. Note that if b ∈ B, then the
elements of Γ(p) act as a group of permutations on the set (discrete space) p−1[ {b} ].

The proof of Theorem 54.5 in Munkres generalizes directly to yield the following fundamental
result, which is Corollary 81.4 on page 489 of Munkres.

THEOREM. Let p : E → B be a covering space projection, and assume that E is simply
connected (i.e., its fundamental group is the trivial group). Let b ∈ B, and suppose that G ⊂ Γ(p)
acts uniquely transitively on p−1[ {b} ] (if p(e1) = p(e2) = b, then there is a unique T ∈ Γ such that
T (e1) = e2). Then π1(B, b) ∼= Γ(p).

We now apply this to examples.

LENS SPACES AND THE QUATERNIONIC SPACE FORM. In these cases we have a sphere Sn where
n ≥ 2, and the spaces in question are quotients of the form Sn/G for suitable finite groups G; these
spaces turn out to be compact topological manifolds (see the exercises), and by the theorem we
have π1(S

n/G, y0) ∼= G. These yield the following basic facts:

10



(i) Every finite cyclic group is the fundamental group of a compact topological manifold.
(ii) There is at least one nonabelian finite group which can be realized as the fundamental

group of a compact topological manifold.

In fact, one can realize infinitely many nonabelian finite groups as in (ii). Specifically, in side
the group of unit quaternions S3, for each positive integer k ≥ 3 the subgroup Q(4k) generated
by the complex number exp(2πi/q) and j turns out to be a nonabelian group of order 4k; the
previously defined quaternionic group is merely the special case where k = 2 and the complex
number is merely i.

This leads immediately to the first general realization statement at the beginning of the com-
mentary for Section 54:

PROPOSITION. Every finitely generated abelian group is the fundamental group of a compact
topological manifold.

Sketch of proof. We already know this is true if the group in question is cyclic, and we also know
that every finitely generated abelian group is a product of cyclic groups. Therefore it is enough
to have some means for showing that the product of two realizable groups is also realizable. One
step in this process is the following fairly simple fact. If Mm and Nn are topological manifolds of
dimensions m and n respectively, then their product is a topological (m + n)-manifold, and this
product is compact if M and N are compact (why is this true?). The other step is the following
basic result:

PROPOSITION. Let (X,x) and (Y, y) be pointed topological spaces, and let p : X × Y → X
and q : X × Y → Y be projections onto the factors. Then the associated group homomorphisms
p∗ and q∗ define a group isomorphism from

π1

(
X × Y, (x, y)

)

to π1(X,x)× π1(Y, y).

Sketch of proof. We know that p∗ and q∗ are group homomorphisms and that they define a
group homomorphism from the fundamental group of X × Y to π1(X,x) × π1(Y, y). To see this
map is 1–1, suppose that we have closed α and β in X × Y such that p oα and p oβ are base point
preservingly homotopic, and likewise q oα and q oβ are base point preservingly homotopic. If K
and L are the respective homotopies, let H be the unique continuous map into X × Y such that
p oH = K and q oH = L. Then H defines a base point preserving homotopy from α to β. — To
see the group homomorphism is onto, note that if γ and δ are base point preserving closed curves
into X and Y respectively, then there is a unique base point preserving curve ξ : [0, 1] → X × Y
whose coordinate functions are γ and δ respectively (formally, we have p oξ = γ and q oξ = δ).

The Klein bottle turns out to be an example of a space whose fundamental group is infinite
and nonabelian.

COMPUTATION OF THE FUNDAMENTAL GROUP OF THE KLEIN BOTTLE. We have constructed
the Klein bottle as the base space of a 2-sheeted covering space projection T 2 → K. If we compose
this with the standard covering space projection from R2 to T 2, we obtain an infinitely sheeted
covering space projection ϕ from R2 to K by Exercise 4 on page 341 of Munkres. By the theorem
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stated above, it is only necessary to observe that there is a subgroup of covering transformations
for the covering space projection R2 → K which is infinite, transitive and nonabelian.

Let e ∈ K be the image of (1, 1) ∈ T 2, and view R2 as the complex numbers C. Then ϕ−1[ {e} ]
consists of all complex numbers having the form 1

2
m + ni where m and n are integers. If we let χ

denote complex conjugation, then covering transformations for ϕ are given by

X(z) = χ(z) + 1
2
, Y (z) = z + ni

and one can check directly that the subgroup generated by these transformations is transitive on
ϕ−1[ {e} ] Note that X2 and Y generate the group of covering transformations for the torus covering
R2 → T 2, and this subgroup has index 2 in the group generated by X and Y .

It follows that the group G generated by X and Y is the fundamental group of the Klein bottle.
A routine computation shows that

Y X Y −1X−1 = Y 2

and from this we can conclude that π1(K, e) is infinite and not abelian.

Munkres, Section 55

The main results of this section are the no-retraction theorem (55.2 on p. 348) and the Brouwer
Fixed Point Theorem for D2 (55.6 on p. 351). In this commentary we shall describe a slightly
different approach to the latter which is more standard and does not involve vector fields. The key
to this is the following result.

PROPOSITION. Suppose that there is a continuous map from Dn to itself with no fixed points
for some n > 0. Then Sn−1 is a retract of Dn.

Sketch of Proof. Suppose that f : Dn → Dn is continuous but f(x) 6= x for all x. For each
x ∈ Dn one can define the line joining x to f(x), and from this one can also define the ray [f(x)x
— which starts at f(x) and passes through x. If we draw a picture, it seems clear that this ray
meets the boundary sphere Sn−1 either at x or at some point past x on the ray; the latter means
that the point has the form f(x) + t

(
x− f(x)

)
where t > 1. Furthermore, it also seems that this

intersection point should vary continuously with x. If this is the case then the map r : Dn → Sn−1

will be a continuous mapping whose restriction to the boundary sphere is the identity and thus we
shall have a retraction from the disk to the boundary sphere. If n = 2 we know this is impossible,
so the conclusion of the Brouwer Fixed Point Theorem follows in this case.

We should also note that a similar argument proves the fixed point theorem when n = 1; in
this case one cannot have a retraction from D1 onto S0 because the former is connected but the
latter is not, and the continuous image of a connected space is connected.

In order to make the preceding argument logically rigorous, we need to justify all the assertions
regarding the intersections of rays with the boundary sphere and to verify that the construction
is continuous. Since this is frequently “left as an exercise to the reader” in texts (for example, on
page 32 of Hatcher) and the argument is somewhat lengthy despite its elementary nature, we shall
include a formal statement and proof for the sake of completeness.
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LEMMA. There is a continuous function ρ : Dn ×Dn −Diagonal → Sn−1 such that ρ(x,y) = x

if x ∈ Sn−1.

If we have the mapping ρ and f is a continuous map from Dn to itself without fixed points,
then the retraction from Dn onto Sn−1 is given by ρ(x, f(x) ).

Proof of the Lemma. It follows immediately that the intersection points of the line joining y

to x are give by the values of t which are roots of the equation

|y + t(x− y)|2 = 1

and the desired points on the ray are given by the roots for which t > 1. We need to show that
there is always a unique root satisfying this condition, and that this root depends continuously on
x and y.

We can rewrite the displayed equation as

|x− y|2t2 + 2〈y,x − y〉t + (|y|2 − 1) = 0 .

If try to solve this nontrivial quadratic equation for t using the quadratic formula, then we obtain
the following:

t =
−〈y,x− y〉 ±

√
〈y,x− y〉2 + |x− y|2 · (1− |y|2)
|x− y|2

One could try to analyze these roots by brute force, but it will be more pleasant to take a more
qualitative viewpoint.

(a) There are always two distinct real roots. We need to show that the expression inside
the square root sign is always a positive real number. Since |y| ≤ 1, the expression is clearly
nonnegative, so we need only eliminate the possibility that it might be zero. If this happens, then
each summand must be zero, and since |y−x| > 0 it follows that we must have both 〈y,x−y〉 = 0
and 1− |y|2 = 0. The second of these implies |y| = 1, and the first then implies

〈y,x〉 = |y|2 = 1 .

If we combine this with the Cauchy-Schwarz Inequality and the basic condition |x| ≤ 1, we see that
|x| must equal 1 and x must be a positive multiple of y; these in turn imply that x = y, which
contradicts our hypothesis that x 6= y. Thus the expression inside the radical sign is positive and
hence there are two distinct real roots.

(b) There are no roots t such that 0 < t < 1. The Triangle Inequality implies that

|y + t(x− y)| = |(1− t)y + tx| ≤ (1− t)|y| + t|x| ≤ 1

so the value of the quadratic function

q(t) = |x− y|2t2 + 2〈y,x − y〉t + (|y|2 − 1)

lies in [−1, 0] if 0 < t < 1. Suppose that the value is zero for some t0 of this type. Since there
are two distinct roots for the associated quadratic polynomial, it follows that the latter does not
take a maximum value at t0, and hence there is some t1 such that 0 < t1 < 1 and the value of the
function at t1 is positive. This contradicts our observation about the behavior of the function, and
therefore our hypothesis about the existence of a root like t0 must be false.
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(d) There is one root of q(t) such that t ≤ 0 and a second root such that t ≥ 1. We know
that q(0) ≤ 0 and that the limit of q(t) as t → −∞ is equal to +∞. By continuity there must be
some t1 ≤ 0 such that q(t1) = 0. Similarly, we know that q(1) ≤ 0 and that the limit of q(t) as
t→ +∞ is equal to +∞, so again by continuity there must be some t2 ≥ 1 such that q(t2) = 0.

(d) The unique root t satisfying t ≥ 1 is a continuous function of x and y. This is true
because the desired root is given by taking the positive sign in the expression obtained from the
quadratic formula, and it is a routine algebraic exercise to check that this expression is a continuous
function of (x,y).

(e) If |x| = 1, then t = 1. This just follows because |y + 1(x− y)| = 1 in this case.

The proposition now follows by taking

ρ(x,y) = y + t(x− y)

where t is given as above by taking the positive sign in the quadratic formula. The final property
shows that ρ(x,y) = x if |x| = 1.

The Fixed Point Property

We shall conclude this discussion with a few general remarks.

It is not difficult to construct examples of spaces X and continuous self maps f : X → X such
that f does not have a fixed point. For example, translation by a nonzero vector in Rn has no
fixed points, and if a group G acts freely on a space X as above, then the self homeomorphisms
determined by the nonzero elements of G never have fixed points (this yields compact examples).
We shall say that a space X has the Fixed Point Property if every continuous mapping from X
to itself has a fixed point. A fair amount of work has been done to determine which spaces have this
property (related comments appear in the paragraph on p. 351 of Munkres preceding Corollary
55.7). We shall limit outselves to proving an important fact which is asserted without proof in the
derivation of Corollary 55.7 on pp. 351–352 of Munkres.

PROPOSITION. If X has the fixed point property and Y is homeomorphic to X, then Y also
has the fixed point property.

Proof. Let f : Y → Y be continuous, and let h : X → Y be a homeomorphism. Then
g = h−1 of oh is a continuous self map of X, and as such it has a fixed point, say x. A routine
computation now shows that y = h−1(x) is a fixed point for f .

Munkres, Section 56

Although this section of Munkres is not listed as part of the course coverage, some comments
on its content (a proof of the Fundamental Theorem of Algebra) seem worthwhile.

As noted on pp. 353–354 of Munkres, there are many proofs of the Fundamental Theorem of
Algebra, and ultimately they all require some input that is intrinsically nonalgebraic and involves
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the geometry or topology of the complex plane. In particular, one standard approach using the
theory of functions of a complex variable is mentioned at the top of page 354.

If one looks carefully at the proofs of the Fundamental Theorem of Algebra in many complex
variables texts, issues about the completeness of the arguments often arise. Usually these concern
path independence properties of line integrals. A logically rigorous approach to these issues nor-
mally requires some information about homotopy classes of closed curves in open subsets of the
plane (the same input which appears explicitly in Munkres’ proof). This commentary provides the
background needed to fill in the details that are sometimes omitted in books on complex variables.

One immediate complication involves the definition of an analytic function; in some references
it is defined as a complex valued function f defined on an open subset U ⊂ C such that f ′ exists
and is continuous on U , and in other references it is taken to be a function f for which f ′ exists,
with no a priori assumption of continuity. In fact, the two notions are equivalent, for the existence
of f ′ guarantees its continuity, but this is a nontrivial fact. We shall consider both cases here,
beginning with the easier one in which f ′ is assumed to be continuous.

Suppose we know that f ′ exists and is continuous. Suppose that we are given a piecewise
smooth (or, more generally, a rectifiable continuous) curve γ. Write the function f in the form
f = u+ vi, where u and v are functions with continuous partial derivatives satisfying the Cauchy-
Riemann equations. Then the line integral

∫
γ
f(z) d(z) is equal to

∫

γ

u dx − v dy + i ·
∫

γ

v dx + u dy .

Assume now that the region U in the complex plane is rectangular with sides parallel to the
coordinate axes (all x + yi such that a ≤ x ≤ b and c ≤ y ≤ d). We claim that the given line
integral depends only upon the initial and final points of γ. This is shown using corresponding
results from multivariable calculus about path independence. By Green’s Theorem, a line integral∫

γ
P dx+Qdy over a rectangular region is path independent if we have

∂Q

∂x
=

∂P

∂Y

and using the Cauchy-Riemann equations ux = vy, uy = −vx, we see that the displayed relation
holds for the integrands in the real and imaginary parts of

∫
γ
f(z) dz. This leads to the following

basic result:

PROPOSITION. Let f be an analytic function on the open set U ⊂ C in the stronger sense (f ′

is continuous), and let α and β be continuous rectifiable curves in U with the same endpoints such
that α and β are endpoint preservingly homotopic. Then

∫
α
f(z) dz =

∫
β
f(z) dz.

This follows directly from the corresponding result for multivariable calculus which is estab-
lished in the following document:

http:math.ucr.edu/∼res/math246B/coursenotes0101.pdf
Although these notes are for a higher level course, the content of the cited portion does not

require any background beyond that developed thus far in the present course.

Suppose we know that f ′ exists but we are not given any information regarding its continuity.
We can use the preceding approach PROVIDED we can show that if U is a rectangular region then
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∫
γ
f(z) dz only depends upon its endpoints. This is done in many complex variables books; for

example, it appears on pp. 109–115 of the book by Ahlfors, Section 9.2 of the book by Curtiss,
and Section 2.3 of the book by Fisher, all of which are listed below:

L. V. Ahlfors. Complex Analysis (3rd Ed.), McGraw-Hill, New York, 1979.

J. H. Curtiss. Introduction to Functions of a Complex Variable (Pure and Applied
Math., Vol. 44). Marcel Dekker, New York, 1978.

S. D. Fisher. Complex Variables (2nd Ed.), Dover, New York, 1990.

The notion of homotopy also leads to a definitive version of the Cauchy Integral Formula for
an analytic function f defined near the complex number a:

f(a) =
1

2πi
·
∫

γ

f(z)

z − a dz

The point is that we can give and explicit description of the type of curve γ for which the formula
is valid; namely, if f is defined on the open set U and a ∈ U , then we can take γ to be an arbitrary
continuous rectifiable curve in U−{a} which is homotopic to a counterclockwise circle of sufficiently
small radius centered at a.

Munkres, Section 58

The textbook describes an important class of homotopy equivalences (deformation retracts).
As noted at the beginning of Chapter 0 in Hatcher, such maps arise very naturally in topology, and
by Corollary 0.21 on pp. 16–17 of Hatcher, two spaces X and Y are homotopy equivalent if and
only if there is a third space W containing both of them as deformation retracts (see also the final
paragraph on page 365 of Munkres). This result is based upon the mapping cylinder construction,
which we shall discuss below. However, before doing so we shall state a variant of the result from
Hatcher.

PROPOSITION. Let f : X → Y be continuous. Then there is a topological space Z and
continuous maps g : X → Z, h : Z → Y and j : Y → Z such that (1) the maps j and g are
homeomorphisms onto their images, (2) we have h og = f , (3) the subspace j[Y ] is a deformation
retract of Z. If X and Y are Hausdorff spaces, then one can also conclude that Z is Hausdorff.

Corollary 0.21 in Hatcher shows that if f is a homotopy equivalence then we can also conclude
that g[X] is a deformation retract of Z.

ANALOG FOR POINTED SPACES. If we have a base point preserving map, then one can
find a pointed space Z ′ and base point preserving maps g′, h′, j′ such that the conditions in the
proposition are satisfied and j ′[Y ] is a base point preserving deformation retract of Z ′.

The mapping cylinder construction is given on page 13 of Hatcher; specifically, if f : X → Y is
continuous, then the mapping cylinder M(f) is a quotient space of the disjoint union X×[0, 1] q Y ,
where the equivalence relation is generated by stipulating that for each x ∈ X the points (x, 1) and
f(x) are equivalent. If we are given pointed spaces (X,x0) and (Y, y0), then the pointed mapping
cylinder is formed from the same disjoint union, but in this case the equivalence relation is generated
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by the previous condition and the further stipulation that for each t ∈ [0, 1] the points (x0, t) and
f(x0) are equivalent.

Before proceeding, we shall address one point not considered in Hatcher:

LEMMA. If in the above settings the spaces X and Y are Hausdorff, then the ordinary and
pointed mapping cylinders are also Hausdorff.

The proof of this fact is left to the exercises.

In the course of proving the proposition we shall also need a special case of Exercise 29.11.(a)
on page 186 of Munkres: If W is a topological space, R is an equivalence relation on W , and
π : W → W/R is the associated quotient mapping of spaces, then π × id[0,1] is a quotient map.
(In fact, the result is true if the unit interval is replaced by an arbitrary locally compact Hausdorff
space.)

Proof of Proposition. We shall only do the unpointed case; the proof of the pointed case is
similar and left as an exercise. Let q : X × [0, 1] q Y → M(f) be the quotient space projection.
The mapping g is defined by g(x) = q(x, 0), and the mapping j is defined by j(y) = y. To define h,

start by defining h̃ from X × [0, 1] q Y to Y by h̃(x, t) = f(x) and h̃(y) = y. Since h̃ is constant
on the equivalence classes q−1[{w}] for all w ∈ M(f), there is a unique continuous map h such

that h oq = h̃. It is a routine exercise to verify that the constructed maps and Z = M(f) have
properties (1) and (2). To prove (3), note that h oj = 1Y , so that we need to define a homotopy
from j oh to the identity on M(f).

The first step in constructing this homotopy is to define a continuous map

H̃ :
(
X × [0, 1] q Y

)
× [0, 1] ∼= X × [0, 1] × [0, 1] q Y × [0, 1]→M(f)

by H̃(x, s, t) = q(x, s + t − st) and H̃(y, t) = q(Y ). If a and b are points of W = X × [0, 1] q Y

such that q(a) = q(b), then we have H̃(a, t) = H̃(b, t), so H̃ passes to a continuous map on the
quotient space of W × [0, 1] given by (a, u) ∼ (b, v) if and only if aR b and u = v. By the exercise

in Munkres cited above, this quotient space is merely M(f) × [0, 1], and therefore we see that H̃
passes to a homotopy of the restrictions to M(f) × {0} and M(f) × {1}. By construction, these
restrictions are the identity on M(f) and j of .

Written version of a visual proof

Example 2 on page 362 of Munkres gives a visual “proof” that the figure 8 space S 1 ∨ S1 is a
deformation retract of the doubly punctured plane R2 − {p,q}. For the sake of completeness we
shall give a written argument which follows the steps suggested by Figure 58.2 on the cited page.

First of all, we need to take explicit models. Let p and q be the points (0,± 1
2 ). Then the first

step in the figure suggests that D2 − {p,q} should be a deformation retract of R2 − {p,q}. This
is fairly simple to check. Let

r : R2 − {p, q} −→ D2 − {p,q}
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be the map which sends x to itself if |x| ≤ 1 and to |x|−1 · x if |x| ≥ 1. If i0 is the inclusion map of
the doubly punctured disk into the doubly punctured plane, then r oi0 is the identity, and the map
i0 or is homotopic to the identity by the straight line homotopy homotopy H0(x, t) = tx+(1−t)r(x)
because the image of the latter lies in the doubly punctured plane.

In this, as in many other, cases, we say that the subspace is a strong deformation retract of
the larger space because the homotopy satisfies H0(y, t) = y for all y in the subspace.

The second step in Figure 58.2 is to show that if E is the union of two closed disks

{x ∈ R2 | |x− p| ≤ 1
2
} or {x ∈ R2 | |x− q| ≤ 1

2
}

(note that the intersection of the disks is the origin) then E−{p,q} is a strong deformation retract
of D2−{p,q}. In this case the definition of the retraction is more complicated and we must divide
into cases, depending upon whether the first coordinate of x = (u, v) is nonnegative or nonpositive.
Specifically, if 0 ≤ u ≤ 1 then let r(u, v) = (u, v) if (u− 1

2 )2 + v2 ≤ 1
4 and if the reverse inequality

holds let

r(u, v) =

(
u, sign(v) ·

√
1
4 −

(
u− 1

2

)2
)
.

(Although the function sign(v) is discontinuous at 0, a direct check shows that the function defined
by the displayed formula turns out to be continuous.) If i1 denotes the associated inclusion, then
r oi1 is the identity and once again there is a straight line homotopy from the identity to i1 or which
is the constant homotopy on E − {p,q}.

Finally, in the last step we need to show that the figure 8 space given by the union of the
circles with equations |x − p| = 1

2
and |x − q| = 1

2
is a strong deformation retract of E − {p,q}.

Once again the definition of the retraction splits into cases depending upon the sign of the first
coordinate of x. Specifically, if x = (u, v) satisfies u ≥ 0, then

r(x) = p +
1

2 |x− p| · (x− p)

while if u ≤ 0 then

r(x) = q +
1

2 |x − q| · (x− q) .

One can then check that this mapping is well-defined, its restriction to the figure 8 is the identity,
and there is a straight line homotopy from the composite of inclusion following retraction to the
identity on E − {p,q}.

Munkres, Section 59

The triviality of π1(S
n, x0) for n ≥ 2 was previously established in the exercises, but Theorem

59.1 is fundamentally important in its own right.

One additional corollary of Theorem 59.1 is important enough to be worth mentioning at this
point.
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PROPOSITION. Suppose we are given a Figure 8 space F = C1 ∪ C2, where C1 and C2 are
each homeomorphic to S1 and C1 ∩ C2 consists of one point p. Then π1(F, p) is generated by the
images of π1(C1, p) and π1(C2, p).

Proof. Let U1 be the union of C1 with the open semicircle V2 in C2 centered at p, and define U2

similarly. Then by construction U1 ∪ U2 = F and U1 ∩ U2 is homeomorphic to a union of four half
open intervals which share a common endpoint and nothing else. This set is contractible (hence
simply connected), and hence π1(F, p) is generated by the images of π1(U1, p) and π1(U2, p).

It will suffice to show that Ci is a strong deformation retract of Ui where i = 1 or 2, for this will
show that the images of π1(Ci, p) and π1(Ui, p) are equal. Now {p} is clearly a strong deformation
retract of the open semicircles Vj (which are homeomorphic to open intervals), and one can define
a retraction and homotopy on each Ci ∪ Vj (where j 6= i) by taking the union of the constructions
on Vj with the identity on Ci.

Munkres, Section 60

Many of the computations in this section have already been done in the commentaries or
exercises. We shall give alternate approaches to the examples of nonabelian fundamental groups.
As in Munkres, it will be convenient to think of the Figure 8 space as the subset of all (z, w) ∈ T 2

such that either z = 1 or w = 1; in other words, it is the union of the circles {1}×S 1 and S1×{1},
which intersect in a single point.

LEMMA. Let F be the Figure 8 space with base point e = (1, 1), let (x, x) be an arbitrary
pointed space, and suppose that we are given a, b ∈ π1(X,x). Then there is a continuous base point
preserving map ϕ : (F, e)→ (X,x0) such that the image of ϕ∗ contains the subgroup generated by
a and b.

If we know this, then we can prove π1(F, e) is nonabelian as follows: We know there are pointed
spaces (X,x) such that π1(X,x) is nonabelian. Take any such space, and take an arbitrary pair of
elements a, b such that ab 6= ba. By the lemma we know that π1(F, e) has a homomorphic image
containing the nonabelian subgroup generated by a and b. Since all homomorphic images of an
abelian group are abelian, it follows that π1(F, e) cannot be abelian.

Proof of Lemma. (Sketch) Let α and β be continuous closed curves representing a and b
respectively. Note that F is the quotient space of E = {0}× [0, 1]∪ [0, 1]×{0} by the map h which
sends (s, t) to (e2πi s, e2πi t); by construction, this map sends E onto F , and it is closed (hence it
is a quotient map). Thus if we define ϕ0 on E by ϕ0(s, t) =

(
α(s), β(t)

)
then ϕ0 will pass to a

continuous map ϕ on F . Furthermore, if u ∈ π1(F, e) is the class of (e2πi s, 1) and and v is the class
of (1, e2πi t), then we have a = ϕ∗(u) and b = ϕ∗(b). This is what we wanted to prove.

Fundamental group of the double torus

At the end of Section 60, Munkres mentions that the fundamental group of a certain space
called the double torus (also known as the oriented surface of genus 2) has a nonabelian fundamental
group. His discussion provides motivation and some figures which indicate how one might try to
prove this result. We shall use similar ideas to provide a complete proof of the given result.
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Our proof requires a slight modification of the construction in Munkres. We shall remove
squares rather than round disks from the two copies of T 2. Specifically, let J ⊂ S1 be the closed
arc of length π/36 (= 5◦) whose endpoints are (1, 0) and (cos π/36, sinπ/36), and let J0 be the
open arc defined by removing the endpoints. Denote the set of endpoints by K. Then the double
torus is obtained from the disjoint union of two copies of

T 2
0 = T 2 − J0 × J0

by identifying the closed subsets Γ = K × J ∪ J ×K of the two copies in the obvious manner (i.e.,
(p, 1) ∼ (p, 2) for all p ∈ Γ); note that J × J is homeomorphic to the square [0, 1] × [0, 1] and Γ
corresponds to the closed curve on the boundary.

A pinching map from T 2
0 to T 2, which collapses Γ to a point, is mentioned at the bottom of page

374 in Munkres. Our next step will be to define a map in the setting above which has the required
property (however, our construction does not map the complement of Γ homeomorphically to the
complement of { (1, 1)}; it is not 1–1 on J×S1∪S1×J). This is done most easily by viewing S1 as
the quotient space [0, 1]/0 ∼ 1. Let h : [0, 1]→ [0, 1] be the continuous map which is zero on [0, 1/36]
and maps [1/36, 1] to [0, 1] by a 1–1 onto increasing linear function, and let H : [0, 1]× [0, 1]→ T 2

be the following map:
H(s, t) =

(
e2πi h(s), e2πi h(t)

)

This passes to a map of quotients from T 2 to itself (viewing T 2 as the quotient of [0, 1]× [0, 1] with
(s, 0) ∼ (s, 1) and (0, t) ∼ (1, t) for all s and t). Furthermore, the disjoint union of two copies of
H|T 2

0 passes to a map of quotient spaces from T 2 # T 2 to the one point union T 2 ∨ T 2 formed
by identifying the points (1, 1) in each of the two pieces of T 2 q T 2. One can now project from
T 2 ∨ T 2 to the analogous space S1 ∨ S1 formed from S1 q S1 by identitying the two points 1
in the pieces. Specifically, this map is given by taking the disjoint union of two copies of the first
coordinate projection map T 2 → S1 and passing to quotients. Note that the space we call S1 ∨ S1

is just the space we previously called F . Consider the closed curves θj (where j = 1, 2) given by
the following composites:

S1 × {1} ⊂ T 2
0 ⊂ T 2 # T 2 −→ T 2 ∨ T 2 −→ S1 ∨ S1

There are two possible inclusions of T 2
0 into the double torus, which is a union of two closed

subspaces that are homeomorphic to T 2
0 , and the index j corresponds to choosing one of the

inclusions.

By construction, the images of the generators of π1(S
1) under θj∗ are represented by the closed

curves
(
e2πi h(s), 1

)
and

(
1, e2πi h(t)

)
. These also represent the generators of the images of the two

basic circles in S1 ∨ S1, which we know are generators for π1(S
1 ∨ S1, e). Therefore we see that

the associated homomorphism from π1(T
2 # T 2, e) to π1(S

1 ∨S1, e) is surjective. — This means
that the nonabelian group π1(T

2 # T 2, e) is isomorphic to a quotient group of π1(S
1 ∨ S1, e), and

therefore the fundamental group of T 2 # T 2 cannot be abelian.

FURTHER COMMENTS ON MUNKRES, CHAPTER 9

In one of the exercises we noted that the Cantor Set does not have the homotopy type of an
open subset in some Euclidean space because it has uncountably many components. Since we also
know that the fundamental group of an open subset in some Euclidean space is countable, it is
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natural to ask if one can also construct a compact subset of, say, the plane whose fundamental group
is uncountable. An example of this sort (the shrinking wedge of circles, sometimes also known as
the Hawaiian earring) is described in Chapter 1 of Hatcher (see Example 1.25 on pp. 49–50).

We have seen that the fundamental group of R2 −{0} is infinite cyclic and that every finitely
generated abelian group can be realized as the fundamental group of a compact topological manifold.
An example of an open subset in R2 with an infinitely generated fundamental group is given by
taking the complement U of the set of all negative integers {−1,−2, · · · }.

Here is one way of proving that π1(U, 1) is not finitely generated: View U as a subset of the
complex plane, and let αk denote the closed curve in U given by the counterclockwise circle with
radius (2k+1)/4 and center (3−2k)/4, so that αk meets the real axis at the points 1 and (1−4k)/2.
Therefore each αk defines an element ak of the fundamental group of π1(U, 1). For each positive
integer j let Uj denote the complement of {−j}, and let ϕj denote the map of fundamental groups
determined by the inclusion of U in Uj followed by an isomorphism from π1(Uj , 1) to the integers
Z. It follows that ϕj(ak) is a generator if j ≤ k and trivial if j > k; this is true because the point
−j is inside the circle αk if j ≤ k and outside the circle if j > k (see the additional exercise for
Section 56).

We may combine the preceding homomorphisms to define a homomorphism Φ from π1(U, 1) to
a product

∏∞
Z of countably infinitely many copies of Z (with addition defined coordinatewise);

specifically, for all j, the jth coordinate of Φ is ϕj . Since the homomorphic image of a finitely
generated group is finitely generated, it will suffice to show that the image of Φ is not finitely
generated. This final step is purely algebraic, and it depends upon the standard structure theorems
for finitely generated abelian groups.

It is a routine exercise to check that if {Gα} is a family of groups such that the only elements
of finite order are the identities, then the product

∏
α Gα also has this property. Similarly, the

product is abelian if each factor is abelian. Both of these properties carry over to subgroups, and
in particular they apply to the image of Φ. Therefore, if the image of Φ is finitely generated, the
structure theorem for finitely generated abelian groups implies that it is a direct sum of infinite
cyclic groups, and as such it has some finite rank r. For each positive integer m, let Hm denote
the subgroup generated by the classes ϕj(aj) for j ≤ m. Then Hm is the subgroup of

∏∞
Z

consisting of all elements for which the pth coordinate is zero for all p > m. This group has rank m;
it follows that for each positive integer m the image of Φ contains free abelian subgroups of rank
m. Since the image of Φ has no nontrivial elements of finite order, our finite generation assumption
on the image of Φ implies that the latter is free abelian and has some fixed finite rank q. General
considerations involving finitely generated abelian groups imply that every subgroup of the image
of Φ is also free abelian and has rank at most q. This contradicts the final sentence in the preceding
paragraph. The ultimate source of this contradiction is our assumption that the image of Φ is
finitely generated. As noted before, this suffices to show that the fundamental group of U is not
finitely generated.

In fact, it is possible to show that every countably generated group can be realized as the
fundamental group of an open subset in Rn if n ≥ 4, but proving this would require methods and
results which are outside the scope of this course.

LAST BUT NOT LEAST. Here are a couple of results that are important to know but have not yet
been mentioned in the text or commentaries. First of all, a covering space projection is an open
mapping; a proof of this fact appears near the end of math205Bhints1.pdf. Also, the following
result could/should have been included earlier:
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PROPOSITION. Let p : E → B be a covering space projection, and assume that B is (nonempty
and)connected. Then the cardinality of p−1[{b}] is the same for all b ∈ B.

Proof. Define an equivalence relation on B by x ∼ y if and only if p−1[{x}] and p−1[{y}] have
the same cardinality. By the definition of covering space, the equivalence classes of this relation
are all open, and since they are pairwise disjoint it follows that they are also closed. Since B is
connected, there can only be a single equivalence class.

Munkres, Section 61

The central objective of Chapter 10 in Munkres is to prove the Jordan Curve Theorem and
some of its consequences. This result, which states that a simple closed curve in the plane separates
the latter into two connected components, has been known empirically since at least the Late Stone
Age (to quote the prominent topologist L. Siebenmann, it is “a fact that shepherds have relied on
since time immemorial”), but known efforts to prove the general result mathematically only date
back to the 19th century, and as noted in Munkres the first complete proof was published in 1905.
Munkres also notes that the standard approach to proving this result is to view it a special case
of a more general result (the Jordan-Brouwer Separation Theorem, which states that if A ⊂ Rn

is homeomorphic to Sn−1, then A separates Rn into two components), and to prove the latter
using another algebraic construction on spaces called homology theory (which is covered in
Mathematics 246A and 246B).

One obvious motivation for Munkres’ proof of the Jordan Curve Theorem is to illustrate how
algebraic constructions like the fundamental group can be effectively used to answer “difficult
questions concerning the topology of the plane that arise quite naturally in the study of analysis
... [for which the answers] seem geometrically quite obvious but turn out to be surprisingly hard
to prove [Munkres, p. 376].” In particular, many of the arguments are extremely delicate. In
these commentaries we shall describe simpler arguments which prove a conclusion that is weaker
but yields the Jordan Curve Theorem for curves that are relatively well-behaved; in particular,
it applies to broken line curves and more generally to curves that are piecewise smooth, but we
cannot say a priori that it applies to objects such as fractal curves (an interesting topic which is
outside the scope of this course sequence).

Locally flat curves

We shall begin by defining the restricted class of curves for our setting and indicating why this
class contains all the “standard” examples.

Definition. Let X be a topological space, and let γ : [0, 1]→ X be a (continuous) parametrized
curve. We shall say that γ is a simple curve if either γ is 1–1 or if γ(t1) = γ(t2) and t1 6= t2, then
{t1, t2} = {0, 1}. If X is Hausdorff, this means that either γ maps [0, 1] homeomorphically onto
its image or else γ passes to a continuous closed curve γ̃ from S1 ∼= [0, 1]/0 ∼ 1 which maps S1

homeomorphically onto its image.

In the first case, the curve is often called a simple compact arc, and in the second case the
curve is often called a simple closed curve.
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Definition. A parametrized curve γ : [a, b] → Rn is said to be locally flat if for each t ∈ [a, b]
there is an open neighborhood U of γ(t), an open interval J containing t, an open neighborhood
V of the origin in Rn−1, and a homeomorphism h : U → J × V such that for all s ∈ [a, b] ∩ J we
have h oγ(s) = (s, 0).

One can use the Inverse Function Theorem to prove the following:

PROPOSITION. If ε > 0 and γ : (a− ε, b + ε)→ Rn is a curve such that γ ′ always exists and
a nonzero continuous function on the given (open) interval, then the restriction of γ to [a, b] is
locally flat.

Sketch of proof. Let t be given, choose vectors v2, · · · ,vn such that {γ′(t),v2, · · · ,vn} is a
basis for Rn, and define g : (a− ε, b+ ε)×Rn−1 → Rn as follows:

g(x1, · · · , xn) = γ(x1) +
n∑

i=2

xi vi

The g has continuous partial derivatives wherever it is defined, and the linear transformation
Dg(t,0) is an isomorphism because it takes the standard basis of Rn to {γ′(t),v2, · · · ,vn}. By
the Inverse Function Theorem and the properties of the product topology there are open sets
J ⊂ (a−ε, b+ε) containing t and V ⊂ Rn−1 containing 0 such that g maps J×V homeomorphically
onto an open subset U ⊂ Rn (in fact, the inverse homeomorphism’s coordinate functions have
continuous partial derivatives, but we shall not need this). If h is the inverse homeomorphism, then
for all s ∈ J we have h oγ(s) = (s, 0) as required.

REMARKS. There is no assumption in the proposition that the curve γ is 1–1, but the conclusion
implies that a curve satisfying the given conditions will be locally 1–1. The “lazy figure 8” curve
γ(t) = (cos t, sin 2t) is a curve which satisfies the conditions of the proposition but is not globally
1–1, even if one restricts to the open interval (0, 2π); its values at t = π

2 and t = 3π
2 are the same,

but the tangent vectors for these parameter values are different. Many further examples can be
constructed using other Lissajous curves of the form (cos p t, sin q t), where p and q are positive
integers.

Definitions. A locally flat simple compact arc in Rn is a simple compact arc which has a locally
flat parametrization. A locally flat simple closed curve in Rn is a simple closed curve which has a
periodic locally flat parametrization α : R→ Rn such that (i) the restriction to [0, 1] parametrizes
the simple closed curve, (ii) for all integers n we have α(t + n) = α(n). — Of course, given
any parametrization γ : [0, 1] → X of a simple closed curve there is a unique associated periodic
parametrization γ∗ : R→ X.

If we define a piecewise smooth parametrization of a curve to be a function γ : [0, 1] → Rn

for which there is a partition of [0, 1] into subintervals with endpoints 0 = t0 < · · · < t+m = 1
such that each restriction γ|[ti−1, ti] has continuous nonzero derivatives at all points, then one can
in fact prove that every curve with a piecewise smooth parametrization is locally flat. For the
sake of simplicity, we shall only state and prove this result for broken line curves (as defined in the
exercises).

PROPOSITION. If γ is a broken line curve in Rn and γ is either a simple compact arc or a
simple closed curve, then γ is locally flat.
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Proof. By the definition of broken line curves, there is a parametrization γ for which there
is a partition of [0, 1] into subintervals with endpoints 0 = t0 < · · · < t + m = 1 such that
each restriction γ|[ti−1, ti] is a straight line segment. Local flatness at all interior points of the
subintervals follows immediately from the construction (linear parametrizations are globally flat!),
so it is only necessary to check what happens at the points ti. In both cases (compact arcs and
closed curves) it is necessary to consider the points ti for which i 6= 0,m, and in the closed case it
is also necessary to consider the cases where i = 0 or i = m.

CLAIM: If i 6= 0,m, then γ(ti)− γ(ti−1) and γ(ti+1)− γ(ti) are not positive multiples of each
other, and if γ is closed then γ(tm) − γ(tm−1) and γ(t1) − γ(t0) are also not positive multiples of
each other. — If the first of these happens, then there is a point γ(u) such that 0 < u < 1 such that
some open neighborhood of γ(u) in Γ = Image (γ) is homeomorphic to a half-open interval, and if
the second happens then there is a similar neighborhood of γ(0) = γ(1). Each of these contradicts
the assumption that γ maps [0, 1] or S1 (in the separate cases) homeomorphically onto Γ.

We shall first prove that in both cases γ is locally flat at all points ti such that 0 < i < m;
this will prove the result in the non-closed case, and in the closed case we shall need to modify the
argument to show the periodic extension of γ is locally flat at 0 (equivalently, at 1).

There are two subcases, depending upon whether or not γ(ti)−γ(ti−1) and γ(ti+1)−γ(ti) are
negative multiples of each other. If the latter is true, then one can construct the homeomorphism
h as follows: Construct an orthonormal basis for Rn by taking u1 to be a positive multiple of
γ(ti+1) − γ(ti), and extending this to an orthonormal basis for Rn. Let a = γ(ti), and let h0 be
the isometry which sends a,a+u1, · · · ,a+un to the standard configuration 0, e1, · · · , en, where
the ej are the standard unit vectors. Define positive real numbers

c =
ti − ti−1

|γ(ti)− γ(ti−1)|
d =

ti+1 − ti
|γ(ti+1)− γ(ti)|

respectively, and define a homeomorphism h1 from Rn to itself by setting h1(x1, · · · , xn) =
(ti + cx1, x2, · · · , xn) if x1 ≥ 0 and h1(x1, · · · , xn) = (ti + cd1, x2, · · · , xn) if x1 ≤ 0; note that
the two definitions agree on the overlapping set where x1 = 0. t1 > 0. Then a restriction of h1

oh0

to a suitably small neighborhood of γ(ti) will have all the required properties.

In the remaining cases, the vectors γ(ti)−γ(ti−1) and γ(ti+1)−γ(ti) are linearly independent.
Let v and w be unit vectors which are positive multiples of γ(ti) − γ(ti−1) and γ(ti+1) − γ(ti)
respectively, and (if n ≥ 3) choose orthonormal vectors u3, · · · ,un such that these vectors together
with v and w form a basis for Rn. Let u2 be a unit vector which is a positive multiple of v + w,
and let u1 be a unit vector which is perpendicular to u2 and satisfies 〈w,u1〉 > 0. — In order to
justify the final statement, we need to check that if y is nonzero and perpendicular to u2, then the
dot product of y and w is nonzero, but this can be checked as follows: By construction, no two of
the vectors v, w and u2 are scalar multiples of each other, for the the first two vectors are linearly
independent third vector is a linear combination of v and w such that the coefficients of both are
nonzero. By the Schwarz Inequality we then know that −1 < 〈u2,w〉 < +1, and therefore it follows
that the absolute value of 〈y,w〉 is equal to

|y| ·
√

1 − 〈u2,w〉2 > 0 .

The figure in the document flattening.pdf illustrates the statements made in this paragraph and
the next one.

We shall construct a piecewise linear homeomorphism from Rn to itself which is the identity
on the subspace spanned by the vectors ui for i ≥ 2 and sends w and v to u1 and −u1 respectively.
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As indicated in flattening.pdf, this map flattens the angle 6 v0w into the 1-dimensional vector
subspace spanned by u1, and (as also indicated in the cited document) it is easier to describe the
inverse, which is given as follows: If x = x1u1 + x2u2, then k(x) = x1w + x2u2 if x1 ≥ 0 and
k(x) = |x1|v + x2u2 if x1 ≤ 0; this map sends the x-axis to 6 v0w, it maps the upper half plane to
the interior of this angle, and it maps the lower half plane to the exterior of this angle. The two
definitions reduce to the identity on the span of u2, each vertical line of the form cu1 + tu2 (where
c is constant and t runs through all real numbers) is sent to itself, and the function is a translation
on each vertical line. If we now take h0 and h1 as in the first case, then the homeomorphism
h = h1

ok−1 oh0 will have the required properties. This completes the proof for simple arcs.

It remains to complete the proof in the case of simple closed curves at the initial and terminal
point γ(0) = γ(1). Given such a broken line curve γ, let γ∗ be its periodic extension to a curve
defined over the entire real line; next, let γ1 : [0, 1] → U be given by γ1(s) = γ∗(t1 + s), where t1
is the first partition point in the description of γ as a broken line curve. Then γ1 is also a closed
simple broken line curve, but we now have γ1(0) = γ1(1) = γ(t1), so by the preceding discussion
we know that γ1 is locally flat at γ1(1 − t1) = γ(1) = γ(0). Since the parametrizations of γ and
γ1 are related by the elementary change of variables s = t − t1, it follows that γ is locally flat at
γ(0) = γ(1).

If we have a locally flat closed curve defined on [0, 1], then we know that it can be extended to
the real line. In some situations it is helpful to have the following analogous fact for curves whose
endpoints are not the same.

PROPOSITION. Let W be an open subset of some Euclidean space Rn. If γ : [0, 1] → W is a
locally flat curve, then there is some ε > 0 such that γ extends to a locally flat curve on (−ε, 1+ε).
Furthermore, if γ is 1− 1, it is possible to find a 1− 1 extension for some (potentially smaller) ε.

Proof. Since γ is locally flat at 0, there is an open neighborhood U of γ(0), an open interval J
containing t, an open neighborhood V of the origin in Rn−1, and a homeomorphism h : U → J×V
such that for all s ∈ [0, 1] ∩ J we have h oγ(s) = (s, 0). We might as well assume that the interval
J has the form (−δ, δ) for some δ > 0. We may now extend γ to (−δ, 1] by setting γ(s) = h−1(s, 0)
for s ≤ 0; this and the original definition agree when s = 0, and therefore we have a locally flat
extension of γ to some interval of the form (−δ, 1]. A similar argument shows that we can extend
γ further to a locally flate curve on some interval of the form (−δ, 1 + δ ′) for a suitable choice of
δ′ > 0. Finally, if we take ε to be the smaller of δ and δ ′, we obtain an extension of the original
curve γ to (ε, 1 + ε).

It remains to check that we can choose ε′ > 0 so that the restriction to (ε′, 1+ ε′) is 1–1. Since
a locally flat curve is locally 1–1, it follows that there is some η ∈ (0, 1

2 such that the restrictions of
γ to (−η, η) and (1− η, 1 + η) are both 1–1. Furthermore, since γ(0) 6= γ(1) one can also choose η
so that the images of these restrictions are disjoint. Let A be the image of γ restricted to [η, 1− η].
Since the restriction of γ to the original interval [0, 1] is 1–1 and A is compact, there will be some
M > 0 such that the images of γ restricted to

[
− 1

M
η, 1

2η
]

and
[
1− 1

2η, 1 + 1
M
η
]

will be disjoint
from A. If we now take ε′ = 1

M
η, then the restriction of γ to (ε′, 1 + ε′) will be 1–1.

Complements of locally flat simple arcs

Our objective is to prove the Jordan Curve Theorem for locally flat closed curves. This will
first require some information about the complements of locally flat simple arcs. In fact, we have
the following strong conclusion.
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COMPLEMENT THEOREM. If Γ ⊂ R2 is a locally flat simple arc and we view R2 as a
subset of S2 in the usual fashion, then S2 − Γ is homeomorphic to R2.

The proof of this result will require some preliminary machinery. We begin by using the
preceding result to prove a strengthening of local flatness.

BOX LEMMA. Let γ : (a, b) → R2 be 1–1 and locally flat, and let x0 ∈ (a, b). Then there is a
closed interval (x0− δ, x0 + δ) ⊂ (a, b) and a homeomorphism H from [−2, 2]× [−1, 1] onto a closed
subset of R2 such that the image of (−2, 2)× (−1, 1) is open and we have the following:

(i) The restriction of γ to
[
x0 − 2

3δ, x0 + 2
3δ

]
is given by

H

(
3(t− x0)

2δ
+ x0, 0

)
.

(ii) If η ∈
(
0, 1

2
(b− a)

)
and x0 ∈ [a+ η, b − η] and Kη is the image of [a + η, b− η] under γ,

then the intersection of the image of H with Kη is equal to the image of
[
x0 − 2

3δ, x0 + 2
3δ

]
under

γ.

NOTE. The argument below also shows that the conclusions of (i) and (ii) remain true if we replace[
x0 − 2

3δ, x0 + 2
3δ

]
by an arbitrary closed subinterval [y, z].

Proof of the Box Lemma. Since γ is locally flat and x0 ∈ (a, b), there is an open neighborhood
U of γ(x0), an open interval J containing x0, an open neighborhood V of the origin in R, and a
homeomorphism h : U → J × V such that for all s ∈ J we have h oγ(s) = (s, 0). We might as well
assume that J = (x0 − δ, x0 + δ) for some δ > 0 and that V = (−θ, θ) for some θ > 0. Let J0 be
the closed interval of length 4

3δ centered at x0.
Let B denote the compact setKη−J , and let B′ denote its image under γ. Since γ is 1–1, we can

find an open neighborhood C of γ[J0] that is disjoint from B ′. The image of this open neighborhood
under h contains a set of the form J0×[−θ′, θ′] for some θ′ ∈ (0, θ). The desired homeomorphismH is
constructed by first taking the homeomorphism from

[
x0 − 2

3δ, x0 + 2
3δ

]
×[−θ′, θ′] to [−2, 2]×[−1, 1]

given by a product of linear maps on the two factors, and then composing with the inverse to the
homeomorphism h mentioned in the first paragraph of this argument.

The next result will yield the Complement Theorem for flat curves.

LOCAL SHRINKING LEMMA. There is a continuous mapping ϕ from R2 to itself with the
following properties:

(i) The map ϕ onto, and it is the identity on the complement of the open set (0, 2) × (0, 2).
(ii) If π2 denotes projection onto the second coordinate, then for all (x, y) we have π2

oϕ(x, y) =
y.

(iii) The map ϕ is 1−1 on the complement of the closed segment C = [0, 1]×{1}, and it maps
this compact set to (0, 1).

(iv) The restriction of ϕ to R2 − C maps the latter homeomorphically to R2 − {0}.

A proof of this result is described in the file shrinkmap.pdf. In fact, the restriction in (iv)
is the identity off a bounded set and hence if we extend the map to S2 by sending the point at
infinity to itself, we obtain a homeomorphism from S2 −C to S2 − {pt} ∼= R2.

Proof of the Complement Theorem. Intuitively, the idea is simple. Given a simple locally
flat arc Γ, we partition the arc into finitely many small pieces Γi and use the preceding results to
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show that the complement of ∪i≤k Γk is homeomorphic to the shorter arc ∪i<k Γk for each k > 1,
and at the final step when k = 1 we show that the complement of Γ1 is homeomorphic to the
complement of its left hand endpoint.

Here is a more formal version of the approach; at a few points some basically routine but
tedious details are omitted and left to the reader. Extend γ to (−ε, 1 + ε) as before, and for each
x ∈ [0, 1] let δx be as in the proposition above. Then there is a Lebesgue number ξ for the set of
all intervals

(
x− 1

3δx, x+ 1
3δx

)
where x ∈ [0, 1], and choose a positive integer n such that 1

n
< 1

2 ξ.
Then we can apply the Box Lemma (and the accompanying note) to find well-behaved compact
subsets Qk which are homeomorphic to products of two closed intervals and contain the intervals

[
k

n
,
k + 2

n

]
.

Let Hk denbote the homeomorphism from [−2, 2]× [−1, 1] to Qk given by the Box Lemma, and let
ψ be the homeomorphism from [0, 2] × [0, 2] to [−2, 2] × [−1, 1] sending (u, v) to (2u− 2, v − 1) so
that each map Hk

oψ defines a homeomorphism ψk onto its image Ek and ψk maps the frontier of
the square to the frontier of Ek. For each k such that 1 ≤ k ≤ n we may now define a continuous
map from R2 to itself such that λk is given by ψk

oϕ oψ−1
k on Ek and the identity otherwise. Less

formally, λk corresponds to ϕ under the homeomorphism between [0, 2] × [0, 2] and Ek, and it is
the identity at all other points. Once again, since λk is the identity off a bounded set, there is a
unique continuous extension to S2 given by sending the point at infinity to itself.

For all k ≥ 0, let Γk denote the image of the restriction of γ to the interval

[
k

n
,
k + 1

n

]

and it k > 0 let Σk denote the union Γ1 ∪ · · · ∪ Γk+1 for k > 0. By construction, if k > 0 then
the map λk defines a homeomorphism λ′

k from R2 − Σk to R2 − Σk−1, and if k = 0 then the
map λ0 defines a homeomorphism λ′

0 from R2 − Σ0 to R2 − {γ(0)}; as before, one also obtains
similar homeomorphisms if R2 is replaced by S2. Since Γ = Σn−1 we may combine the preceding
statements to conclude that R2 − Γ is homeomorphic to R2 − {γ(0)}, and likewise that S2 − Γ
is homeomorphic to S2 − {γ(0)}. Since the latter is homeomorphic to R2, the conclusion of the
Complement Theorem follows.

The separation theorem

The main result in Section 61 of Munkres is the following theorem.

THEOREM. Let C be a locally flat simple closed curve in R2 ⊂ S2. Then the complement of C
in S2 is not connected.

Proof. View C as the image of a continuous map from S1 to R2, and let C+ and C− be the
images of the upper and lower semicircles. Then C+ and C− are locally flat simple arcs, and hence
S2 − C± is homeomorphic to R2.

We know that S1 is not homeomorphic to S2 because the former becomes disconnected if two
points are removed and the latter does not. Thus C is a proper subset of S2 and S2 − C has at
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least one component. Suppose that it has only one component. Since the sets S 2−C± are arcwise
connected by the Complement Theorem and

S2 − C = S2 − C+ ∩ S2 − C−

it would follow that
S2 − (C+ ∩ C) = S2 − C+ ∪ S2 − C−

would be simply connected. However, C+∩C− consists of two points, and S2−{x, y} ∼= R2−{v} ∼=
S1 ×R is not simply connected, so we have a countradiciton. The source is our assumption that
the complement of C is connected, and hence it must have at least two components.

At this point we only know that S2 − Γ has at least two components if Γ is a locally flat
simple closed curve. In the commentary to Section 63 we shall prove that there are exactly two
components, and that Γ is the set of frontier points for each of these components.

Munkres, Section 63

The following result is needed in our proof of the Jordan Curve Theorem.

LIMIT POINT LEMMA. Let n > 0, let A be a nonempty compact subset of Rn, and let C
be a connected component of Rn −A. If Lim(C) denotes the set of limit points for C in Rn, then
Lim(C) ∩A 6= ∅.

Proof of the Limit Point Lemma. Suppose to the contrary that Lim(C) ∩ A = ∅. Then we
must have Lim(C) ∩ A ⊂ Rn − A. Now the latter is open in Rn and hence is locally connected,
so that each component C is both open and closed in Rn − A and also open in Rn. Combining
this with the previous conclusions, we see that Lim(C) ∩ A is contained in C, which implies that
C must be closed in Rn. Since A is a nonempty proper subset of Rn, this is a contradiction. The
source of this contradiction is the hypothesis that Lim(C) ∩A = ∅, and therefore the intersection
must be nonempty as claimed.

For the sake of completeness, here is a statement of the main result.

JORDAN CURVE THEOREM. Let Γ ⊂ R2 be homeomorphic to S2. Then R2 − Γ and
S2 − Γ have exactly two components, and Γ is the frontier of each component.

The component of S2−Γ containing the point at infinity is called the exterior region determined
by the curve, and the other component is called the interior region determined by the curve. There
is an expected relation between the components of R2 − Γ and S2 − Γ. Namely, if U1 and U2 are
the components of S2−Γ and U2 contains the point at infinity, then the components of R2−Γ are
given by U1 and U2 − {∞} (see the first additional exercise for Section 61).

Proof. Since Γ is locally flat, for each x ∈ Γ there is an open neighborhood U of x in R2 such
that U − Γ has two components, and in fact such neighborhoods form a neighborhood base at x.
Furthermore, one can find a neighborhood base of this type such that if V ⊂ U then the inclusion
map determines a 1–1 correspondence from components of V −Γ to components of U−Γ. It follows
that for each x ∈ Γ there are components C1(x) and C2(x) of S2−Γ (which may be the same) such
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that for all sufficiently small neighborhoods W of x the set W − Γ is contained in C1(x) ∪ C2(x).
Thus if SubCC is the set of connected components of S2−Γ, we obtain a map of sets C from Γ to
SubCC. The local flatness condition implies that this mapping is locally constant, and therefore
it is continuous if Γ has the subspace topology and SubCC is given the discrete topology. Since Γ
is connected, it follows that C is a constant map.

The reasoning of the preceding paragraph shows that there are connected components C1 and
C2, which for all we know at this point may be the same, such that for some open neighborhood
V of Γ we have V −Γ ⊂ C1 ∪C2. In order to complete the proof we must show that (i) S2−Γ has
no components other than C1 and C2, (ii) we cannot have C1 = C2.

If (i) is true, then (ii) follows because otherwise S2 −Γ would be connected and we know this
is not the case, so everything reduces to proving (i). But suppose that C3 is a component of S2−Γ.
By the Limit Point Lemma there is a limit point y of C3 which lies in Γ. By the definition of limit
point, there is some basic open neighborhood W0 of y such that W0 contains a point z of C3; since
C3 ∩ Γ = ∅, this point must lie in W0 − Γ. However, we know that the latter set is contained in
C1 ∪C2 and since components are pairwise disjoint this means that C3 must be equal to C1 or C2.
This completes the proof that the complement has two components. The statement about frontier
points is an immediate consequence of this fact and local flatness (observe that t ∈ (a, b) implies
that t is a limit point of both (a, b)× (0, h) and (a, b)× (−h, 0), and combine this with local flatness
to see that every point of Γ is a limit point of C1 and C2).

Concluding remarks

For most of the standard simple closed curves Γ ⊂ S2, it is apparent (and sometimes very
easy to check) that the interior regions in S2 − Γ are homeomorphic to open disks, and in fact
the closures of these regions are homeomorphic to closed disks. A fundamental theorem of plane
topology known as the Schoenflies Theorem proves this is true for arbitrary Γ (without a local
flatness assumption). One proof of this result appears in Section IV.20 of the following book:

G. E. Bredon. Topology and Geometry . Graduate Texts in Mathematics Vol. 139.
Springer-Verlag, New York–etc., 1993. ISBN: 0–387–97926–3

In particular, the Schoenflies Theorem implies that a simple closed curve in the plane is locally
flat, and using this result one can also show that a simple compact arc in the plane is locally flat
at all interior points of the interval. Similarly, one can extend the Complement Theorem to simple
arcs which are not assumed to be locally flat; a discussion of the latter appears at the end of the
file complements.pdf.

On the other hand, it is possible to construct arcs in Rn which are not locally flat for all n ≥ 3.
A 3-dimensional example is discussed on page 231 of the book by Bredon. Many other examples
(including curves in Rn for n ≥ 4) are contained in the following book:

T. B. Rushing. Topological Embeddings. Pure and Applied Mathematics, Vol. 52.
Academic Press, New York and London, 1973.

Munkres, Section 64

This section discusses some results on classes of topological spaces that are called finite linear
graphs in Munkres and finite edge-vertex graphs on pp. 3–4 of math205Bhints2.pdf. There is
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a slight difference in these definitions; in Munkres it is assumed that two edges meet in just one
endpoint, but in the other document the intersection is also allowed to be both vertices. In the
first paragraph of page 395 in Munkres there is a passing comment that every object of the first
type can be expressed as an object of the first type. We shall begin by justifying this assertion.

LEMMA. Let Γ be a finite edge-vertex graph, and let E be the collection of edges determining
the graph structure of Γ. Then there is another family of closed subsets E ′ such that the following
hold:

(i) The family E ′ is a collection of edges for a possibly different graph structure on Γ.

(ii) Each element of E ′ is contained in a unique element of E such that one endpoint of E ′ is
also an endpoint for E but another is not, and each edge in E is a union of two edges in E ′.

(iii) The intersection of two distinct edges in E ′ is a single point which is a common vertex.

Proof. For each edge E ∈ E , pick a point bE ∈ E that is not an endpoint. It follows that
E − {bE} has two connected components, each of which contains exactly one endpoint of E. If x
is an endpoint of E define the set [x,E] to be the closure of the component of E − {bE} which
contains x. If E ′ denotes the set of all such subsets [x,E], then it follows immediately that E ′ has
the properties stated in the lemma. Note that by construction the endpoints of a given edge [x,E]
are x and bE .

The family E ′ is frequently called the derived graph structure associated to E .
As noted in Exercise 55.A4, many examples of edge-vertex graphs are suggested by ordinary

letters and numerals. The main results in Section 64 of Munkres give examples of graphs which
cannot be realized as subsets of R2.

Strictly speaking, the results in this commentary yield Theorems 64.2 and 64.4 in Munkres
only for a restricted class of graphs; specifically, we need an analog of the local flatness conditions
in Sections 61 and 63.

Definition. Let Γ ⊂ R2 be an edge-vertex graph with edge structure E . We shall say that Γ is a
locally tame subset or that the embedding of Γ is locally tame (with respect to E) if the following
hold:

(1) The restriction of Γ to an open edge (an edge with the endpoints removed) is locally flat.

(2) If x is a vertex of Γ and {Eα } is the set of edges which contain x as an endpoint, then
there is a homeomorphism h from an open neighborhood U of x to an open neighborhood
V of 0 such that h(x) = 0 and there is a corresponding (finite) set of distinct rays Sα

beginning at the origin such that for each α the image h[Eα ∩ U ] lies on Sα.

The results of Section 61 show that Γ is locally tame with respect to E if and only if it is locally
tame with respect to E ′. Furthermore, if we construct a simple closed curve using edges from E
(or the derived structure), then this simple closed curve will also be locally flat by the results of
Section 61.

Alternate proof of Lemma 64.1

The proofs of Lemma 64.1, Theorems 64.2 and 64.4 in Munkres depend upon a result from
Section 63 (Theorem 63.5) that was not covered in this course. We shall modify the approach in
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Munkres to prove the first two of these results for locally tame edge-vertex graphs in the plane. In
fact, the proof of Theorem 64.2 in Munkres will go through for locally tame graphs homeomorphic
to the utilities graph if we can prove Lemma 64.1 for locally tame graphs in the plane which are
homeomorphic to the Figure Theta graph, so this will be our key objective. Similar methods will
yield alternate proofs of Lemma 64.3 (which analyzes spaces homeomorphic to the complete graph
on four vertices) and Theorem 64.4 (which involves spaces homeomorphic to the complete graph
on five vertices) for locally tame graphs in the plane, but we shall not do so in order to limit the
length and complexity of the discussion.

Proof of Munkres, Lemma 64.1, for locally tame graphs. We adopt the same notation as
on page 395 of Munkres: The space X is the union of three simple locally flat compact arcs A, B, C
such that the intersection of any pair is the two point set {a, b}. Then the locally flat simple closed
curve A∪C separates S2 into two components U and V , and we shall assume that V contains the
point at infinity (viewing S2 as the one point compactification of R2). Let A0 = A − {a, b}, and
define B0 and C0 similarly.

STEP 1. This is a preliminary reduction of the proof to a special case. By definition, the set
B0 is a connected subset of U∪V . We claim it suffices to consider the case where B0 ⊂ U . If B0 ⊂ V
instead, then let c ∈ U be arbitrary, and consider the homeomorphism h from S2 = R2 ∪ {∞} to
itself which sends z to 1/(z − c) if z 6= c,∞ and switches these two exceptional points (one needs
to verify this map is continuous, but it is elementary to do so). Then the complement of h[A ∪ C]
has two components, the component h[U ] is the unbounded component, and h[B0] lies in the other
component h[V ], which must be the bounded component. If we can prove the result for h[X], then
the result will also be true for X, and therefore there it is enough to prove the result when B0 lies
in the bounded component U of S2 − (A ∪ C).

STEP 2. We shall analyze the relationship between the unbounded components of the
complements of the closed curves A∪C, A∪B and B ∪C. The condition B0 ⊂ U in the preceding
paragraph implies that

S2 − X = (U ∪ V ) − B = (U − B) ∪ V

and therefore V is contained in the unbounded component of S2 − X. This open connected set
is contained in the unbounded components of S2 − (A ∩ B) and S2 − (B ∩ C), and hence V is
contained in the unbounded components V1 and V2 of both S2 − (A ∪B) and S2 − (B ∪ C).

Let U1 and U2 be the bounded components of the complements of A∪B and B∪C respectively.
We want to prove that the sets U1, U2 and V are pairwise disjoint connected open sets whose union
is S2 −X.

STEP 3. We shall prove that small neighborhoods of points in A0 ∪ C0 are contained in
the union of X, U1, U2 and V . Suppose that x ∈ A0. Then by the argument proving the Jordan
Curve Theorem we know that x has a small open neighborhood W such that (i) W −X has two
components, one of which is contained in U and the other of which is contained in V , (ii) W −X
has two components, one of which is contained in U2 and the other of which is contained in V2.
Suppose that P and Q are the two components of W − X, and let P be the component that is
contained in V . Then V ⊂ V2, so P is also the component of W − X which is contained in V2.
It follows that the other component must be contained in U2. Combining these observations, we
obtain (iii) W −X has two components, one of which is contained in U2 and the other of which is
contained in V .
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Similar reasoning yields the following analog for C0: If x ∈ C0, then there is a small open
neighborhood W of x such that W −X has two components, one of which is contained in U1 and
the other of which is contained in V .

STEP 4. We shall need a similar result for B0, but this will require some preparation. First,
we claim that U2 ∪ C0 ⊂ V1 and U1 ∪ A0 ⊂ V2. To prove the first of these, use the previous step
to show that every point of C0 is a limit point of V , and therefore V ∪ C0 is a connected subset
of S2 − (A ∪B); since V2 is the maximal connected set containing V , it follows that C0 ⊂ V1. To
prove that U2 is contained in V1, it will suffice to show that some point in U2 can be connected to
a point in V by a continuous curve whose image is disjoint from A∪B. Let N be an open arcwise
connected neighborhood of some point z ∈ C0 such that N is disjoint from A ∪B and N −X has
two components, one of which is contained in U2 and one of which is contained in V . Clearly it
is possible to connect some point in U2 with some point in V by a continuous curve whose image
lies entirely inside N , which is disjoint from A∪B, and therefore it follows that U2 and V must lie
in the same component of S2 − (A ∪ B). Similar considerations prove the second assertion at the
beginning of this paragraph.

One important consequence of the preceding discussion is that U1 and U2 must be disjoint
(since U2 ⊂ V1). Suppose now that y ∈ B0. Then as in the previous step we know that there is
an open neighborhood W of y such that W − Y has two components and (i) one component is
contained in U1, (ii) one component is contained in U2. Since U1 and U2 are disjoint, it follows
that each of these sets contains one component of W −X.

STEP 5. We shall now use local tameness to give a similar analysis of sufficiently small
neighborhoods of the points a and b in A∩B ∩C. By this hypothesis, locally there are continuous
changes of coordinates such that near a and b the graph looks like three rays emanating from the
origin. Let N be such a neighborhood for either a or b. It follows immediately that N − X is a
union of three pairwise disjoint open connected subsets Y1 ∪ Y2 ∪ Y3. More precisely, there is a
homeomorphism taking a neighborhood of either a or b to a small disk centered at the origin so
that the vertex in question is mapped to the origin, the set N ∩A corresponds to the ray θ = 0 (and
r ≥ 0), the set N ∩ B corresponds to the ray θ = β (and r ≥ 0), and the set N ∩ C corresponds
to the ray θ = γ (and r ≥ 0), where 0 < β < γ < 2π; the open sets Yi then correspond to the
connected open subsets defined by the inequalities 0 < θ < β (for Y1), β < θ < γ (for Y2), and
γ < θ < 2π (for Y3). For i = 1, 2, 3 let Y ′

i ⊂ N correspond to Yi under the continuous change of
coordinates.

Passing to sufficiently small neighborhoods of a or b and the origin if necessary, by the preceding
steps and the proof of the Jordan Curve Theorem we may assume that N − (A ∪ B) is contained
in U1 ∪ V1, N − (B ∪ C) is contained in U2 ∪ V2, and N − (A ∪ C) is contained in U ∪ V .

On the other hand, we know that

N − (A ∪ C) = Y ′
1 ∪ Y ′

2 ∪ Y ′
3 ∪ B0

and its connected components are Y ′
3 and Y ′

1 ∪ Y ′
2 ∪B0. By the discussion above, this means that

one of the latter sets is contained in U and the other in V . Since we know that B0 ⊂ U , it follows
that the first component is contained in V and the second in U ; in other words, we have Y ′

3 ⊂ V .
Similarly, we know that the connected components of N−(A∪B) are given by Y ′

1 and Y ′
2 ∪C0∪Y ′

3 ,
with one of these sets contained in U1 and the other in V1. Since we already know that Y3 ⊂ V
and V ⊂ V1, it follows that Y ′

1 must be contained in U1. Similar reasoning shows that Y ′
2 must be

contained in U2.
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We may restate the conclusions of the preceding paragraph as follows: The points a and b have
open neighborhoods L and M such that L−X and M −X are contained in U1 ∪ U2 ∪ V .

STEP 6. We now have enough machinery to prove the theorem. The preceding steps show
that every point of X has an open neighborhood which is contained in

Ω = X ∪ U1 ∪ U2 ∪ V

and since the last three summands on the right hand side are open it follows that Ω is an open
subset of S2. Furthermore, since the closures of the sets Ui and V are contained in their unions
with the compact subset X, it also follows that the closure of this union

Ω = X ∪ U1 ∪ U2 ∪ V

is contained in Ω and hence Ω is also closed in S2. By connectedness we must have Ω = S2, and
since the summands in the union expression are pairwise disjoint it follows that S 2−X is the union
of the connected, pairwise disjoint open subsets U1, U2 and V . This proves that S2 −X has three
components, and they are given by the three open subsets in the preceding sentence. The assertion
about the frontiers of these open subsets follows immediately from their descriptions in terms of
the locally flat closed curves A ∪B, B ∪ C and A ∪C.

Embedding graphs in R3

In contrast to the results in Munkres, which show that some graphs cannot be realized as
subsets of R2, we have the following general result in higher dimensions:

THEOREM. If Γ is a finite linear graph in the sense of Munkres, then Γ is homeomorphic to a
subset of R3. In fact, there is a homeomorphism such that each edge of Γ corresponds to a closed
line segment in R3.

Proof. The first step is to prove the following general fact: There is a countably infinite set of
isolated points in R3 such that no four are coplanar. — The idea is simple; we can find a set of
four points by simply taking a basis together with 0, and if we have a set S of n points with the
given property, then we can obtain a set S ′ of the same type with one more point by picking some
point which is not in the (finite) union of the planes determined by triples of vectors in S (this uses
the fact that a finite union of planes in R3 cannot be all of R3, which follows because planes are
nowhere dense in R3).

Label the points in the given set as s1, s2, · · · and label the vertices of Γ as v1, v2, · · · vM .
By hypothesis, for each edge E there is a unique pair of distinct integers i and j such that the
endpoints of E are vi and vj . For each i < j, let E(i, j) denote the edge in E with vertices vi and vj ,
provided that there is an edge in E with the given vertices, and let hi,j denote a homeomorphism
from E(i, j) to [0, 1] such that vi is mapped to 0 and vj to 1. Define fi,j on E(i, j) by

fi,j(x) = hi,j(x) · sj +
(
1− hi,j(x)

)
· si .

In words, this map sends E(i, j) to the segment joining si to sj such that vi and vj are sent to si

and sj respectively. These mappings fit together to define a continuous map f from Γ to R3. We
claim this mapping is 1–1; by construction it is 1–1 on each edge, so suppose that we have points y
and z which go to the same point in R3. Suppose that y is on the edge whose vertices map to a and
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b, and suppose that z is on the edge whose vertices map to c and d. It follows that the lines ab

and cd meet at the point f(y) = f(z). Since two intersecting lines are always contained in a plane
(why?), it follows that a, b, c and d cannot be distinct (otherwise they would be noncoplanar).
Interchanging the roles of a and b and of c and d if necessary, we might as well assume that a

= c. If we also have b = d, then the two edges will be identical, and since f is 1–1 on an edge
it will follow that y = z. On the other hand, if b and d are distinct, then the three points a, b

and d must be noncollinear (if we throw in another point e from our infinite set we shall obtain a
coplanar subset of four points). But this means that the two lines ab and ad only meet at a single
point and this point must be a. In other words, in this case the relation f(y) = f(z) implies that
y and z are both endpoints of the distinct edges E and E ′; since two distinct edges have at most
one point in common, this means that y = z as required.

Kuratowski’s Theorem

At the end of Section 64, Munkres mentions a celebrated result of C. Kuratowski, which states
that every graph which cannot be realized as a subset of R2 must contain a copy of either the
utilities network or the complete graph on five vertices. Here is an online reference for the proof:

http://cs.princeton.edu/∼ymakaryc/papers/kuratowski.pdf

FURTHER COMMENTS ON MUNKRES, CHAPTER 10

We shall discuss some additional results on the space which is studied in Munkres, Section 61
(the closed topologist’s sine curve, also known as the Polish circle), and described more explicitly
in polishcircle.pdf.

None of this material will be used subsequently in topics to be covered on examinations, so it
can be skipped without loss of continuity. However, it does illustrate some approaches and methods
that appear frequently in more advanced topology courses, using only material within the setting
of this course and its prerequisite. At one point in the discussion we shall need a result that might
not received much attention in 205A; namely, the Tietze Extension Theorem, which states that
if A is a closed subset of a metric space X and f : A → Rn is continuous, then f extends to a
continuous function on X (see Theorem 35.1 on pp. 219–222 of Munkres).

We begin with a couple of basic observations.

PROPOSITION. Let P be the Polish circle as described as in the references cited above, and
let Vn ⊂ R2 be the open rectangular region

(
0,

2

(4n+ 3)π

)
×

(
−3

2
,

3

2

)
.

Then P − V is homeomorphic to a closed interval and hence is contractible.

This follows immediately from the construction, and the formal proof is left to the reader as
an exercise.
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PROPOSITION. In the setting of the previous result, if K is a compact, connected and locally
connected space, and f : K → P is continuous, then there is some n > 0 such that the image of f
is contained in P − Vn.

Sketch of proof. The main step involves the following standard observation: If (x, 0) ∈ P such
that x ≥ −1, then for every sufficiently small open neighborhood W of (x, 0) in P , the connected
component of (x, 0) in P ∩W is contained in the y-axis. — This is the basic reason why the Polish
circle is not locally connected.

Combining this with the local connectedness of K, we see that for every y ∈ K there is an open
neighborhood Wy and a positive integer n(y) such that f maps Wy into P −Vn(y). By compactness
there is some m > 0 such that f maps K into P − Vm.

COROLLARY. If x0 ∈ P , then π1(P, x0) is trivial.

Similar considerations show that if X is an arbitrary arcwise connected and locally arcwise
connected space, the every continuous map from X to P is homotopic to a constant map.

Proof. If γ is a closed curve in P , then by the previous proposition we know that the image of γ
is contained in a set of the form P − Vm for some m. However, these sets are contractible by the
first proposition above, and therefore the class of γ in the fundamental group of P must be trivial.

In contrast, it turns out that P is not a contractible space. This will be an immediate con-
sequence of the following result, which reflects the similarities between P and the standard circle
S1:

THEOREM. If P is the Polish Circle, then there is a continuous map from P to S1 which is not
homotopic to a constant.

COROLLARY. The space P is not contractible.

Prof. If P were contractible, then for every space Y , all continuous maps from P to Y would be
homotopic to constant mappings.

Proof of Theorem. We shall use the setting and terminology of polishcircle.pdf freely in
the discussion below. Define a mapping r1 from B1 to the boundary G of the square with vertices
(1,−1), (0,−1), (0,−2), and (1,−2) such that G sends (x, y) to

(
x,m(y)

)
, where m(y) is the lesser

of y and −1. By construction, for every positive integer n the restriction of r1 to the simple closed
curve Cn is onto, it is 1–1 off the set {1}× [−1, sin 1), and it is constant on that exceptional interval.
If we compose G with standard homeomorphisms S1 ∼= Cn and G ∼= S1, we obtain a mapping gn

from S1 to itself. Furthermore, if ϕ : [0, 1]→ S1 is the usual map ϕ(t) = exp(2πit), then gn
oϕ is a

map such that gn is onto and there are points an < bn in the open interval (0, 1) such that gn
oϕ

is 1–1 on both [0, an] and [bn, 1], while it is constant on [an, bn]. Furthermore, this function is 1–1
on the complement of [an, bn).

CLAIM. The mapping gn is homotopic to a homotopy equivalence. — Let tn ∈ R be such
that gn(1) = p(tn), where p denotes the standard covering map from R to S1, and let γn denote
the unique lifting of gn

oϕ such that γn(0) = tn. Since γn is 1–1 on [0, an] it follows that it is either
strictly increasing or decreasing there. We shall only consider the case where γn is increasing. In
the other case, the curve −γn is an increasing lifting of the complex conjugate curve gn, and by
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the increasing case we know that this conjugate curve is homotopic to a homeomorphism; taking
conjugates, we see that gn will also be homotopic to a homeomorphism.

So we assume that γn is strictly increasing on [0, an]. Since gn
oϕ is constant on [an, bn], it

follows that the same is true for γn. Next, we claim that γn must be strictly increasing on [bn, 1].
Since gn

oϕ is 1–1 on this interval, the same must be true for γn, which means that the latter is
either strictly increasing or decreasing on the interval. If it were decreasing, this would contradict
the previously stated injectivity properties of gn. Therefore γn is nondecreasing and nonconstant,
so there is a positive integer d such that γn(1) = tn + d. If d = 1 then it will follow that gn is
homotopic to the identity, so it is only necessary to show that d cannot be greater than 1. But if
this were the case, then there would be some s ∈ (0, 1) such that γn(s) = 1 and hence if zs = p(s),
then zs 6= 1 and gn(zs) = gn(1). However, by construction the function gn is 1–1 off the image of
the subinterval [an, bn] under ϕ, and this image does not contain gn(1). Hence we see that d must
be equal to 1, and as noted before this proves the claim.

Returning to the proof of the theorem, let rn denote the restriction of r1 to Bn ⊂ B1, so that
the previous discussion implies that rn|Cn is a homotopy equivalence. It follows immediately that
for each n the map rn cannot be homotopic to a constant mapping; if this were so then r|Cn would
be homotopic to a constant and the same would be true of the associated homotopy equivalence gn

from S1 to itself. Since no such map is homotopic to a constant, the assertion regarding rn follows.

We shall now prove that r|P also is not homotopic to a constant mapping. Assume the
contrary, and let H be a homotopy from r|P to a constant map. Extend H to a continuous map
H ′ on P ×B1× [0, 1] by letting H ′ be given by r on B1×{0} and by the appropriate constant map
on B1 × {1}. Now apply the Tietze Extension Theorem to construct a continuous extension of H ′

to a continuous map K0 from R2× [0, 1] to R2. Let W0 denote the inverse image of R2−{0} with
respect to K0. Then W0 is an open neighborhood of {0}× [−1, 1]× [0, 1], and by the Tube Lemma
it contains a subset of the form

[
0,

1

(2k + 1)π

]
× [−1, 1] × [0, 1]

for some positive integer k. If U is the usual retraction from R2 − {0} to S1 which sends v to
|v|−1 v, then on the set Bk × [0, 1] the map K(x, t) = U

(
K0(x, t)

)
defines a homotopy from rk

to a constant map from Bk to S1.

The preceding sentence contradicts our earlier conclusion that rk is not homotopic to a con-
stant; the source of the contradiction is our assumption that r|P is homotopic to a constant, and
therefore this must be false and the assertion in the theorem must be true.

Further results

As before, this material may be skipped without loss of continuity.

There is a construction which is dual to the fundamental group called the Bruschlinsky group
that we shall now discuss.

Given a nonempty topological space X, define π1(X) to be the set of all homotopy classes
[X,S1]. Previous results and exercises show that the canonical map from π1(s

1, 1) to π1(X) is an
isomorphism. By one of the exercises, the group structure on π1(S

1, 1) can be defined by taking the
pointwise product of two closed curves in S1, and more generally pointwise multiplication defines
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an abelian group structure on π1(X); specifically, if u and v are represented by f : X → S1 and
g : X → S1, then u ·v is represented by their pointwise product f ·g (a little work is needed to show
that the product is continuous and its homotopy class depends only on the homotopy classes of f
and g). This construction has several properties that are analogous to those of the fundamental
group.

(1) If h : Y → X is a continuous map, then there is a homomorphism h∗ : π1(X) → π1(Y )
such that h∗ takes the homotopy class of f : X → S1 to the homotopy class of f oh.

(2) In the preceding construction, if h0 and h1 are homotopic maps, then h∗0 = h∗1.

(3) If h is the identity map on X, then h∗ is the identity homomorphism. If k : W → Y is
another continuous map, then (h ok)∗ = k∗ oh∗.

(4) If h is a constant map, then h∗ is the trivial homomorphism.

(5) If “q” denotes the disjoint union, then there is a canonical isomorphism from the group
π1

(
X q Y

)
to π1(X)×π1(Y ) such that the algebraic coordinate projections correspond

to the homomorphisms induced by the standard inclusions of X and Y in X q Y .

If α ∈ π1(X) and u ∈ π1(X,x0) with representatives f and γ, then the composite f oγ defines
an element of [S1, S1] ∼= Z, and this yields a canonical map assigning to α a homomorphism
K(α) : π1(X,x0) → Z. The set of such homomorphisms is an abelian group with respect to
pointwise multiplication, and the mapping α → K(α) is a homomorphism with respect to this
group structure. Basic results of algebraic topology state that the map K from π1(X) to the
homomorphism group H(X,x0) is an isomorphism if X is a sufficiently “nice” arcwise connected
space (for example, a connected cell complex in the sense of Hatcher). On the other hand, the
discussion above shows that K is not an isomorphism if X is the Polish circle (since π1(P, x0) is
trivial but π1(P ) is not). In fact, if f : P → S1 is the map described in the theorem, then the
argument proving the latter can be extended to show that the map

f∗ : Z ∼= π1(S1) −→ π1(P )

is an isomorphism.

Roughly speaking, the condition for X to be “sufficiently nice” is that each point should have
a neighborhood base of open, contractible sets. Note that this condition holds for topological
manifolds, edge-vertex graphs, and many of the other examples that have been considered in the
course. isomorphism is that X should be arcwise connected.

Munkres, Section 67

Much if not all of the material in this section is covered in the Mathematics 201 graduate algebra
sequence. A few comments on certain aspects of the material will appear in the commentary on
the next section.

37



Munkres, Section 68

Given two groups H and K, the goal of this section is to construct the most general group
which has subgroups isomorphic to H and K; in other words, we want a group G such that if L
is any group which is generated by subgroups isomorphic to H and K, then L is a homomorphic
image of G, and the homomorphism maps the subgroups generated by H and K in G to their
counterparts in L.

One objective of the preceding section was to illustrate the basic idea in the case of abelian

groups. Specifically, given two abelian groups H and K, one wants the most general abelian group
A such that A contains isomorphic copies of H and K. This is fairly easy to do.

PROPOSITION. Let G be an abelian group, let i : H → G and j : K → G be inclusion
homomorphisms of abelian groups, and suppose that G is generated by the images i[H] and j[K].
Then there is a unique surjective homomorphism ϕ : H ×K → G such that for all (h, k) we have
ϕ(h, k) = i(h) · j(k).

Verification of this result is a straightforward elementary exercise.

One can formulate a corresponding question for arbitrary indexed families of groups {Hα }.
In this case the appropriate “universal example” is the direct sum

⊕

α∈A

Hα

which consists of all elements x ∈ ∏
α Hα such that all but finitely many of the coordinates xα

are the trivial elements of the respective groups. Once again, the formulation and the proof of an
analog to the previous proposition are straightforward.

The free product is the corresponding construction for groups that are not necessarily abelian;
in particular, even if the subgroups Hα are abelian this free product is supposed to be the most
general group for all groups generated by isomorphic copies of the subgroups Hα, not just for all
abelian groups.

A striking and fundamental result of A. G. Kurosh gives an elegant description of the subgroups
of a free product. One proof of this result (using topological constructions as in this course) is given
on pages 392–393 of J. Rotman, An Introduction to the Theory of Groups (Fourth Ed., Springer-
Verlag, 1995).

Munkres, Section 69

The free groups in this section may be viewed as special cases of the examples in the preceding
section in which the groups Hα are all infinite cyclic groups. The universal mapping property

in Lemma 69.1 gives an important characterization of such groups in terms of homomorphisms.

Here is an alternate approach to a basic result on free groups.

THEOREM. Let F be a group, and let X and Y be subsets of F such that X and Y are free
generators for F . Then X and Y have the same cardinality.
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Proof. There are two cases, depending on whether or not one of the subsets is finite. Let |X|
and |Y | be the respective cardinalities. If F is freely generated by X, then by Lemma 69.1 it
follows that F admits exactly 2|X| homomorphisms into the cyclic group Z2. Therefore we must
have 2|X| = 2|Y |. If either |X| or |Y | is finite, this means that the other is also finite and these
cardinal numbers are equal. On the other hand, if the cardinalities are both infinite, then it is
straightforward to check that the direct construction of a free product of |X| cyclic groups has
cardinality |X|. Therefore if both X and Y are infinite it follows that |X| = |F | = |Y |. — Note
that the argument in the first case breaks down if X and Y are infinite because one can construct
models for set theory in which two unequal cardinal numbers α and β satisfy 2α = 2β (see the first
unit of the 205A notes).

As noted in Munkres, a subgroup H of a free group G is free, and by the preceding discussion
we know that if |G| ≤ α then every set B of free generators for H also satisfies this inequality (note
that G must be infinite if it is a free group on one or more generators). In particular, if A is an
infinite set of free generators for G, then we must have |B| ≤ |A|. However, if G is a free group
on n generators for some integer n ≥ 2, then one cannot conclude that H has a set of generators
B such that |B| ≤ n. For example, a free group on two generators contains a subgroup which is a
free group on an infinite set of generators.

At the end of this section, Munkres introduces the notion of a finitely presented group. The
reason for interest in these groups is that they are precisely the groups that can be realized as
fundamental groups for certain “nice” classes of spaces, including (i) compact topological manifolds
of dimension ≥ 4, (ii) finite simplicial complexes of dimension ≥ 2 (see Hatcher, p. 107). We shall
prove a closely related result in the commentary for the next section.

A curious example

Page 22 of Hatcher describes a property of the free product Z2 ∗Z2 that is not immediately
obvious but turns out to be quite important in certain contexts. Namely, this group is isomorphic to
the infinite dihedral groupD∞ which has two generators x and y such that x2 = 1 and xyx−1 = y−1.
The element y generates an infinite cyclic subgroup which has index 2 and (hence) is normal. Every
element of this group has a unique description as a product xεyn, where n is an integer and ε = 0
or ±1. The reason for the name involves the ordinary dihedral groups of order 2n, where n ≥ 3
is an integer. These groups are the subgroups of the group O(2) of 2 × 2 orthogonal matrices
which send the standard regular n-gon — which has vertices exp(2πik/n), where 1 ≤ k ≤ n — to
itself. Generators for this group are given by the matrix A which acts by counterclockwise rotation
through an angle of 360/n degrees, and the matrix B which acts by reflection with respect to the
x-axis. These two matrices satisfy the relation BAB−1 = A−1, and in fact the dihedral group of
order 2n is isomorphic to a quotient of D∞ via the map sending x to B and y to A (its kernel is the
subgroup generated by yn). Note that if n = 2 the analogous group is just the Klein Four Group
Z2 × Z2.

Munkres, Section 70

The central objective of this section is to prove the Seifert-van Kampen Theorem, which
describes how one can construct the fundamental group of a space X out of the fundamental groups
of two arcwise connected open subsets U and V such that U ∩ V is also arcwise connected. If we
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let i : U → X and j : V → X denote the inclusion mappings and similarly define i0 : U ∩ V → V
and j0 : U ∩ V → U , then on fundamental groups we clearly have j∗ oi0∗ = i∗ oj0∗, and this is
a nontrivial constraint on the relation between the images of i∗ and j∗. The Seifert-van Kampen
Theorem states that the fundamental group of X is the most general group G for which we have
homomorphisms α : π1(U, x0) → π1(X.x0. and β : π1(V, x0) → π1(X.x0 such that β oi0∗ = α oj0∗.
More precisely, given any (G,αβ) as above, there is a unique homomorphism

Φ : π1(X,x0) −→ G

such that α = Φ oi∗ and β = Φ oj∗.

In the language of category theory, one says that the triple (π1(X,x0), i∗, j∗) is the pushout

of the diagram associated to (π1(U ∩ V, x0), i0∗, j0∗).

Constructing the abstract pushout is straightforward. We simply take the quotient of the free
product π1(U, x0) ∗ π1(V, x0) by the normal subgroup N generated by all elements of the form

i0∗(y) ·
(
i0∗(y)

)−1

where y ∈ π1(U ∩ V, x0). It follows immediately that there is a unique homomorphism Φ from this
pushout Γ to π1(X,x0) such that Φ maps the images of π1(U, x0) and π1(V, x0) in Γ to their images
in π1(X,x0) via i∗ and j∗. The difficult part is to show that Φ is an isomorphism. The proof takes
nearly five pages in Munkres (pp. 426–430). At this point we shall merely assume this result is
true for spaces that satisfy the conditions in the definition below, and we shall give an alternate
proof for such spaces in the commentaries for Chapter 13.

Definition. An arcwise connected, locally arcwise connected topological space X is said to be
semilocally simply connected if every point has at least one simply connected neighborhood.

This definition is slightly stronger that that of Munkres; both arise often in mathematical
writings. Either holds for arcwise connected spaces that are locally simply connected in the sense
that every point has an open neighborhood base of simply connected sets. Note that open sets in
Euclidean spaces and edge-vertex graphs have this property (as do topological manifolds).

Generalizations of the Seifert-van Kampen Theorem

It is natural to ask if the Seifert-van Kampen Theorem can be extended to situations with
weaker hypotheses. We shall discuss two possibilities:

(i) An arcwise connected compact Hausdorff topological space X with is a union of two closed
arcwise connected subspaces A ∪B where A ∩B is also arcwise connected.

(ii) A semilocally simply connected Hausdorff topological space X which is a union of two
semilocally simply connected open subsets U and V where U∩V is not necessarily (arcwise)
connected.

In the first case, it is possible to construct examples such that conclusion of the Seifert-van
Kampen Theorem does not hold. These are related to a subset C ⊂ R3 called the Alexander
Horned Sphere. This set is homeomorphic to S2, and S3 −C has two components U and V whose
frontiers are equal to C; for the sake of definiteness, suppose that ∞ ∈ U . Let A and B be the
closed sets U ∪C and V ∪C. Then A∩B = C, and if the Seifert-van Kampen Theorem held for this
example it would follow that the fundamental groups of A and B would both be trivial. However,
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the fundamental group of B is nontrivial. Further information about this example appears on pages
169–170 of Hatcher and also in the following online sites:

http://mathworld.wolfram.com/AlexandersHornedSphere.html

http://en.wikipedia.org/wiki/Alexander Horned Sphere

On the other hand, there are many situations in which a space X is a union of two arcwise
connected closed subspaces A and B with arcwise connected intersection such that (i) the subsets
A and B are deformation retracts of the open subsets U and V , (ii) the intersection A ∩ B is a
deformation of the intersection U∩V . Under these conditions the analog of the Seifert-van Kampen
Theorem holds for the fundamental groups of X, A, B and A ∩ B. This follows from the validity
of the result for the fundamental groups of groups of X, U , V and U ∩ V and the fact that the
inclusion maps A ⊂ U , B ⊂ V and A ∩B ⊂ U ∩ V are all homotopy equivalences.

In the second case, there is a generalization which states that the fundamental groupoid of
X (see Additional Exercise 52.9) is a suitably defined pushout of the diagram of fundamental
groupoids

Π(U) ←− Π(U ∩ V ) −→ Π(V )

where the arrows are induced by inclusions of subspaces. One reference for this result is the following
book:

R. (= Ronald) Brown. Elements of Modern Topology. McGraw-Hill, New York, 1968.

Extensively revised versions of this book also exist (one published by Ellis Horwood in 1988,
and another by BookSurge in 2006). Since there is more than one R. Brown who has worked in
algebraic topology during the past few decades, we note that the home page for the book’s author
is http://www.bangor.ac.uk/∼mas010/welcome.html and the home page of the other topologist
(Robert F. Brown) is http://www.math.ucla.edu/∼rfb/. Both have written topology books of
potential interest to graduate students.

Munkres, Section 71

One can use the results of this section to give another proof that the fundamental group of
the genus two surface in Section 60 is not abelian. This follows because we can write down the
fundamental group of the surface explicitly. We may view the torus as the quotient of [0, 1]× [0, 1]
by the equivalence relation which identifies (x, 0) to (x, 1) and (0, y) to (1, y) for all x and y, and
we may view the genus two surface as given by the union of two pieces U1 and U2 such that U1

and U2 are homeomorphic to the images of [0, 1] × [0, 1] − {( 1
2 ,

1
2 )} and their intersections are the

images of the sets {
(u, v) ∈ [0, 1] × [0, 1] | (u− 1

2 )2 + (v − 1
2 )2 < 1

16

}

where V ⊂ U1 is identified with V ⊂ U2 by the identity map. Now S1 ∨S1 is a deformation retract
of Ui, and the generator of π1(V ) ∼= Z maps to xyx−1y−1, where x and y are given by the two
circles whose union is S1 ∨ S1. By the Seifert-van Kampen Theorem we now have the following
result.

THEOREM. The fundamental group of the genus two surface X is isomorphic to the quotient
of the free group on generators x1, y1, x2, y2 by the normal subgroup (normally) generated by the
element x1y1x

−1
1 y−1

1 x2y2x
−1
2 y−1

2 , and it is nonabelian.
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The phrases normal subgroup generated and subgroup normally generated by a set X mean
the subgroup generated by the union of the sets χg[X], where χg is the inner automorphism sending
x to g x g−1 and g runs through all the elements of G. By construction, this group is automatically
a normal subgroup of G.

Proof. The fundamental groups of U1 and U2 are freely generated with free generators x, y and
z, w respectively. By the comments preceding the statement of the theorem and the Seifert-van
Kampen Theorem, it follows that the fundamental group of the surface is isomorphic to the quotient
of the free product of these groups — which is just a free group on the four elements — by the
normal subgroup normally generated by xyx−1y−1(zwz−1w−1)−1. The latter is equal to

xyx−1y−1wzw−1z−1

and the first conclusion of the theorem follows by labeling these free generators appropriately.

To prove the fundamental group is nonabelian, it suffices to show that it admits a homomor-
phism onto a free group on two generators. There is a standard surjective homomorphism from
the free group on the xi and yi to the free group on x1 and x2 which sends the xi to the obvious
elements and sends the yi to the identity. This will pass to a (surjective) homomorphism on the
quotient group π1(X,u0) if and only if it sends the element x1y1x

−1
1 y−1

1 x2y2x
−1
2 y−1

2 to the identity.
However, it is easy to check this is the case, and consequently it follows that the homomorphism
from the free group on four generators to the free group on two generators does factor through the
fundamental group of X.

Munkres, Section 72

One important consequence of the main result of this section is the following result which was
mentioned earlier.

THEOREM. If G is a finitely presented group, then there is a space X such that X is obtained
from a finite wedge of spheres by adjoining finitely many 2-cells (as in Munkres) and the fundamental
group of X is isomorphic to G.

Proof. Suppose that G is given by generators g1, · · · , gn and relations r1, · · · , rm. Let X1 be a
wedge of n circles Ci, and choose closed curves γj representing the words rj . Define a map r from
S1 × {1, · · · ,m} to X1 whose restriction to S1 × {j} is equal to γj for each j, and let Y1 be the
mapping cylinder of r. Let Kj ⊂ Y1 correspond to the circle S1 × {j}, take the disjoint union of
Y1 with D2 × {1, · · · ,m}, and identify the circle Kj in the first space with the circle S1 × {j} in
the second. Let Bj be the union of Y1 with the first j disks.

If we now combine Theorem 72.1 in Munkres with an inductive argument to show that for
each k ≤ m, we see that the fundamental group of Bk is given by generators gi with relations
r1, · · · , rk. If k = m then Bm = X and thus we have shown that the fundamental group of X is
isomorphic to G.
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Semilocal simple connectivity

Since we have said we are particularly interested in spaces which are semilocally simply con-
nected, we should note that the objects constructed above do have this property. Most of the work
is contained in the following basic step.

LEMMA. Suppose that X and Y are spaces that are Hausdorff, locally arcwise connected, and
semilocally simply connected, and let f ;X → Y be continuous. Then the (unpointed) mapping
cylinder of f is also Hausdorff, locally arcwise connected, and semilocally simply connected,

Knowing this, we can prove the spaces in the theorem are semilocally simply connected as
follows: If we remove the center points {0} × {j} from the disks, we obtain a set which is home-
omorphic to an open subset in Y1 and hence we have semilocal simple connectivity at all points
except the center points of the disks. However, each center point has an open neighborhood homeo-
morphic to R2, and therefore the semilocal simple connectivity condition also holds at these points.
For the sake of completeness, we should note that this set is compact by construction, and it is
Hausdorff because it is a finite union of closed subspaces which are Hausdorff; namely, the mapping
cylinder Y1 (previously shown) and the disk subspaces homeomorphic to D2 × {j}.

Proof of the Lemma. We have already shown that the mapping cylinder is Hausdorff if X and
Y are. Suppose now that X and Y are locally arcwise connected, let M(f) denote the mapping
cylinder of f , and let q : X × [0, 1] q Y → M(f) be the defining quotient map for M(f). We
know that q maps X × [0, 1) homeomorphically onto an open subset of M(f); this follows because
X × [0, 1) is open in X × [0, 1] q Y and each one point set in X × [0, 1) is an equivalence class for
the equivalence relation defining M(f). Therefore we know that M(f) is locally arcwise connected
at all points coming from X × [0, 1), and we only need to check that the same is true for points
which come from Y .

The statement in the preceding sentence will be derived from the following more general result:
Suppose we are given a continuous mapping f : X → Y with mapping cylinder M(f). Let q be the
quotient projection from X × [0, 1] q Y to M(f), let y ∈ Y , and let V be a neighborhood base
for y in Y . Then a neighborhood base fo q(y) is given by open sets of the form q[V ]∪ q[W ], where
V ∈ V and W ⊂ f−1[V ]× [0, 1] is a saturated open subset (with respect to the equivalence relation
associated to q) which contains f−1[{y}] × {1} and is upwardly vertically convex — in other words,
if (x, t) ∈W , then {x} × [t, 1] ⊂W .

To prove the assertion in the previous paragraph, note that a typical open neighborhood of
q(y) is the image under q of a set having the form V0 q W0, where V0 is an open neighborhood
of y in Y and W0 is a saturated open subset of X × [0, 1] containing f−1[{y}] × {1}. If V ∈ V is
such that y ∈ V ⊂ V0, then by intersecting the given open neighborhood with f−1[V ]× [0, 1] q V
we obtain a new open neighborhood of the form V q W1, where W1 is a saturated open subset of
X × [0, 1] containing f−1[{y}] × {1} and contained in f−1[V ]× [0, 1]. Let U1 ⊂ X be chosen such
that U1×{1} is the saturated set W1∩×{1} (hence U1 is open in X). For each x ∈ U1 take an open
neighborhood of (x, 1) having the form Nx × (εx, 1], where Nx is an open subset of U1 containing
x and Nx × (εx, 1] ⊂ W1, Let W be the union of all these open sets; observe that by construction
we have W ∩X ×{1} = U1× [0, 1]. This open set fulfills the conditions in the preceding paragraph
and it is contained in the image of V ∪W1, and thus we have shown that q(y) has a neighborhood
base of the type described above.
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Completion of the proof of the lemma. Suppose now that X and Y are locally path
connected and y ∈ Y . Then we know that y has a neighborhood base V consisting of arcwise
connected open subsets. Consider a basic neighborhood of y as in the previous paragraph for this
choice of neighborhood base V. By upward vertical convexity it follows that every point in such
a neighborhood lies in the same arc component as a point in q[V ], where V ∈ V. On the other
hand, we know that V is arcwise connected, so there is only one arc component in the basic open
neighborhood of q(y). Therefore M(f) is locally arcwise connected.

Finally, we need to show thatM(f) is semilocally simply connected ifX and Y are. Once again,
this follows immediately for points in the image of X × [0, 1) under Q, for if (x, t) is such a point
and U is a simply connected neighborhood of x, then U × [0, 1) is a simply connected neighborhood
of (x, t). Thus it only remains to show that every point of the form q(y) has a simply connected
neighborhood. Let V be a simply connected neighborhood of y in Y , and consider the open
neighborhood V ∗ of q(y) whose inverse image under q is the saturated open set f−1[V ]× [0, 1] q V .
We know that V is homeomorphic to q[V ], so it is only necessary to check that q[V ] is a strong
deformation retract of V ∗. One quick way of seeing this is to check directly that V ∗ is merely the
mapping cylinder of the map FV from f−1[V ] to V defined by f (so that fV (x) = f(x) for all
x ∈ f−1[V ]); this is immediate on the set-theoretic level, and on the topological level it follows
because of the following basic observation: If q : A → B is a quotient map and U is open in B,
then the continuous map from q−1[U ] to U defined by q is also a quotient map.

FURTHER COMMENTS ON MUNKRES, CHAPTER 11

In the final two paragraphs of Section 69 in Munkres (see p. 425), the isomorphism decision
problem for finitely presented groups is mentioned. This problem asks whether there is some
uniform, totally systematic procedure for determining whether two finitely presented groups are
isomorphic. One criterion for such a procedure is that it should lead to a computer program
which could, after a finite amount of time, determine whether or not two finite presentations (of
generators and relations) define isomorphic groups. As noted in Munkres, one can prove that no
such procedure exists. This is one of several decision problems about groups that were shown to be
unsolvable during the nineteen fifties. Further information on such questions appears in Chapter 12
of the previously cited book by Rotman, and the unsolvability of the isomorphism question appears
as Corollary 12.34 on page 469 of that reference. The following Wikipedia reference discusses the
central question (the Word Problem) starting from first principles:

http://en.wikipedia.org/wiki/Word problem for groups

Munkres, Section 79

Several points in the introduction to Chapter 13 are important enough to note. First of all,
there is a default hypothesis that the domains and codomains of covering spaces are Hausdorff and
(arcwise) connected unless explicitly stated otherwise; one reason for this is that arbitrary covering
space projections (on locally arcwise connected spaces) split into disjoint unions of covering space
projections with arcwise connected domains and codomains. Also, we shall need the full force of
Theorem 54.6. This result states that if p : (E, e0) → (B, b0) is a base point preserving covering
space projection, then the associated map of fundamental groups is injective, and if H denotes
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its image then path lifting defines a 1–1 correspondence between p−1[{b0}] and the quotient of
π1(B, b0) by the equivalence relation generated by g ∼ h g for all h ∈ H.

Change of base point lemma

Let p be as above, suppose that e1 ∈ π1(E, e1) and let H1 denote the image of π1(E, e1) in
π1(B, b0). As noted in Munkres, one basic issue is to understand the relationship between the
isomorphic subgroups H and H1. The ultimate result is that H1 = g H g−1 for some g in the
fundamental group of B. One key step in this argument can be restated in the following general
form:

PROPOSITION. Let (X,x0) and (Y, y0) be pointed spaces, let f : X → Y be base point
preserving, and suppose that we are given x1 ∈ X and y1 ∈ Y such that f(x1) = y1. For i = 0, 1 let

f
(i)
∗ denote the associated map from π1(X,xi) to π1(Y, yi). If γ is a continuous curve in X joining x0

to x1, then the following diagram is commutative; in other words, we have f
(1)
∗

oγ∗ = (f oγ)∗ of
(0)
∗ .

π1(X,x0)
γ∗−−−−−→ π1(X,x1)yf (0)

∗

yf (0)
∗

π1(Y, y0)
[f oγ]∗−−−−−→ π1(Y, y1)

In the example involving covering spaces, the map f is the covering space projection p : E →
B, the points xi are points ei such that p(e0) = p(e1) = b0, and the map [f oγ]∗ is an inner
automorphism of π1(B, b0). Combining this with the earlier discussions, we see that the subgroups
H and H1 are conjugates of each other.

The proof of the proposition is a straightforward exercise.

Munkres, Section 80

It is useful to consider some examples of universal, simply connected coverings spaces. If X
is the n-torus T n, then the universal covering is given by the map

∏n
(p) from Rn to Tn, where

p : R → S1 is the usual covering space projection. If X is the projective space RPn for n ≥ 2,
then the universal covering space is homeomorphic to Sn.

If Mn is a topological n-manifold and p : E → M is a covering space projection, then it
follows immediately that E is also a topological n-manifold, and the results of Section 82 will imply
that every topological n-manifold has a simply connected universal covering space. Furthermore, a
major result of 2-dimensional topology states that every simply connected topological 2-manifold
is homeomorphic to either S2 or R2, and the universal covering of a 2-manifold is homeomorphic
to S2 if and only if the manifold is homeomorphic to S2 or RP2. In particular, it follows that
the universal covering of every connected open subset of R2 is homeomorphic to R2, and R2 is
also (homeomorphic to) the universal covering space of the genus two surface that was previously
considered.
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Munkres, Section 81

Since we shall only need a weak version of the results in this section and the proof in this
case simplifies, we shall state and prove the main result that we shall need. This is a converse to
the earlier construction of spaces Sn/G whose fundamental groups were the groups G for various
choices of n and G.

THEOREM. Let p : E → B be a covering space projection such that E is simply connected,
and let Aut(p) denote the set of covering transformations of p (homeomorphisms T : E → E such
that p = p oT ). Then Aut(p) is isomorphic to π1(B, b0).

It is elementary to verify that the set of all covering transformations of p is a group with respect
to composition of functions (the identity qualifies, and the set is closed under taking composites
and inverses).

Proof. Define a map ϕ from Aut(p) to π1(B, b0) as follows: If T is a covering transformation,
let γ be a continuous curve from e0 to T (e0) and take ϕ(T ) to be the class of [p oγ] in π1(B, b0).
The simple connectivity of E implies that ϕ(T ) does not depend upon the choice of γ.

Given an arbitrary element g of the fundamental group, we know it has the form [p oγ] for some
curve γ. Let e ∈ E be the point over b0 such that γ(1) = e. Then by the general lifting criterion
we know that there is some continuous lifting T : E → E of the map p such that T (e0) = e, and
similarly there is some continuous lifting S of the map p such that S(e) = e0. It follows that S oT
and T oS are liftings of p such that S oT (e0) = e0 and T oS(e) = e. By the uniqueness property of
liftings it follows that S oT and T oS are identity mappings, and hence T is a homeomorphism; it
follows that T lies in Aut(p) and by construction we have ϕ(T ) = g. Therefore ϕ is surjective.

Suppose now that ϕ(T ) = ϕ(S), and let α and β be the curves in the construction of ϕ. It
then follows that p oα and p oβ represent the same element of the fundamental group, and thus we
must have α(1) = β(1). Since the left hand side is equal to T (e0) and the right hand side is equal
to S(e0), it follows that these two elements of E are the same. We can now apply the uniqueness
property of liftings to show that S = T .

Finally, we need to show that the two groups are isomorphic. Let S and T be arbitrary covering
transformations, and as in the preceding paragraph let α and β be the curves in the construction of
ϕ(S) and ϕ(T ) respectively. It then follows that α(1) = S(e0) and β(1) = T (e0), and consequently
the curve α+ S oβ joins e0 to S oT (e0). Thus we have

ϕ(S oT ) = [p o(α+ S oβ)] = [p oα+ p oβ] = [p oα] [p oβ] = ϕ(S) · ϕ(T )

so that the mapping ϕ is a group isomorphism.

In the next section we shall also need the following generalization of the preceding result:

THEOREM. Let p : E → B be a covering space projection such that the image H of the
map p∗ : π1(E, e0) → π1(B, b0) is a normal subgroup, and let Aut(p) denote the set of covering
transformations of p. Then Aut(p) acts transitively on F = p−1[{b0}], and Aut(p) is isomorphic
to π1(B, b0)/H.
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Munkres, Section 82

The construction of a universal simply connected covering space is somewhat complicated,
but the existence of such objects for locally well-behaved spaces itself is fundamentally important.
One advantage of the Munkres definition of semilocally simply connected spaces is apparent in the
corollary near the end of the section, which states that this is the most general situation in which
one can construct a simply connected covering space.

In practice, the spaces for which we want simply connected covering spaces usually satisfy a
local contractibility condition which states that each point has a neighborhood base of contractible
open subsets. This applies in particular to topological n-manifolds (hence to open subsets of Rn)
and to the edge-vertex graphs that we have considered.

Realizing subgroups by covering spaces

If we say that two covering space projections p : E → B and p′ : E′ → B are equivalent if and
only if there is a homeomorphism h : E ′ → E such that p′ = p oh, then the results of Munkres give
a complete proof that the equivalence classes of covering spaces are in 1–1 correspondence with the
conjugacy classes of subgroups of the fundamental group of B provided B has a simply connected
covering space B̃. Given a subgroup H of the fundamental group, one method for constructing
this covering space is to take the quotient EH of B̃ by the equivalence relation generated by the
condition x ∼ h · x for all x ∈ B̃ and h ∈ H. It follows immediately that image of the fundamental
group π1(EH , e) in π1(B, b0) is equal or at least conjugate to H.

Application to the Seifert-van Kampen Theorem

Using universal covering spaces and the preceding remarks, we may give an alternate proof of
the Seifert-van Kampen Theorem for arcwise connected spaces X which are expressible as unions
of arcwise connected open subspaces U and V such that U ∩ V is arcwise connected and each of U
and V has a simply connected covering space.

Let G and H denote the fundamental groups of U and V respectively, and let Ũ and Ṽ denote
their universal coverings. As before, let N be the normal subgroup of G ∗H which is normally
generated by elements of the form

i0∗(y) ·
(
i0∗(y)

)−1

where y ∈ π1(U ∩ V, x0) and i0 : U ∩ V → V , j0 : U ∩ V → U are the inclusion mappings. We are
then interested in the group

Γ = (G ∗H)/N

and we know that there is a canonical homomorphism from Γ to π1(X,x0). Since the images of G
and H generate the fundamental group, we know that this canonical homomorphism is onto. We
shall prove that the map is 1–1 by constructing a covering space E of X whose fundamental group
is isomorphic touch that the image of π1(E, e) is equal to the image of Γ.

Digression. The construction of the desired covering space involves some general concepts
that are also important in other contexts.
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NOTATIONAL CONVENTION. If we are given a group L which acts on a space X and a
homomorphism j : L → M , then we define M ×L X to be the quotient of M × X modulo the
equivalence relation defined by (g, x) ∼ (g · j(h), h−1 · x) for all (g, x) in M × X and h ∈ L. It
follows immediately that if p : E → B is a covering space projection (where E is not necessarily
connected) and L acts as a group of covering space transformations on E, then M ×L E is a not

necessarily connected covering space over B with projection pM sending [g, x] to p(x) for all
(g, x). This is often called a balanced product construction.

This construction has two important properties:

TRANSITIVITY PROPERY. In the setting above, if we are also given a homomorphism
k : M → N , then there is a canonical homeomorphism from N ×M (M ×L X) to N ×L X. If
E → B is a covering space and L acts as a group of covering space transformations on E, then the
canonical homeomorphism is in fact an equivalence of covering spaces.

RESTRICTION PROPERY. Suppose that E → B is a covering space projection such that
E is simply connected and L acts on E by covering space transformations. Suppose that A is an
arcwise connected, locally arcwise connected subspace of B which has a simply connected covering
space, and let j∗ : π1(A.b0)→ π1(B, b0) be induced by the inclusion of A in B. If EA is the inverse
image of A in E and pA : EA → A is the restricted covering space (which need not be connected),

then there is an equivalence of covering spaces from EA to π1(B, b0) ×π1(A,b0) Ã, where as usual

Ã→ A denotes the universal covering space projection.

Both proofs are straightforward and left as exercises.

Completion of the proof of the Seifert-van Kampen Theorem. Consider the spaces

UΓ = Γ ×G Ũ , VΓ = Γ ×H Ṽ .

By the Transitivity and Restriction Properties, the restrictions of these covering spaces to U ∪ V
are canonically equivalent to

Γ×π1(U∩V ) (U ∩ V )∼

(where ( )∼ denotes the universal covering space), and if we take the quotient of UΓ q VΓ formed by
identifying points in these two open subsets via the equivalence of covering spaces, we obtain a space
E, a covering space projection E → X, and an action of Γ on E by covering space transformations.
This action is transitive on the inverse image F of the base point x0; in other words, if e0 ∈ F
is the base point of E and e1 ∈ E, then there is a (necessarily unique) covering transformation T
such that T (e0) = e1.

We claim that E is arcwise connected. In fact, it suffices to show that the inverse image of F
lies in a single arc component of E, for if y ∈ E then one has a continuous curve γ joining p(y) ∈ X
to the base point of X, and if we take the unique lifting of γ which starts at y we obtain a curve
joining y to a point in F ; if all of F lies in one arc component of E, it then follows that every point
of E lies in this arc component.

By construction, if e1 and e2 are two points in F such that g · e1 = e2 for some g in the image
of the fundamental group of U , it follows that e1 can be joined to e2 by a continuous curve whose
image lies in the inverse image of U in E; a similar conclusion holds if we replace U be V in the
preceding statement. By the construction of Γ and the transitivity of Γ on F , we know that if e
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and e0 are in Γ then there is some g such that g · e0 = e, and we also know that g can be written
as a product g1 · · · gk where each gi comes from the fundamental group of U or V . It follows by
induction that for all j the point gj · · · gk · e0 lies in the same arc component as e0. If we take
j = 1 we see that e and e0 must lie in the same arc component of E. This completes the proof that
E is arcwise connected.

Since Γ acts as a group of covering transformations on E and it is transitive on F , the results of
Section 81 imply that the image J of π1(E, e0) in π1(B, b0) is a normal subgroup and the quotient
group is isomorphic to Γ. In fact, the projection map ∂ : π1(B, b0)→ Γ is given by taking a closed
curve γ representing an element g of the fundamental group of B, forming the unique lifting γ̃
starting at e0, and defining ∂(g) so that γ̃(1) = g · e0. One must use the fact that J is normal in
the fundamental group to prove that ∂ is a homomorphism.

Combining this with previous observations, we obtain the diagram of morphisms displayed
below, in which the square is commutative (all compositions of morphisms between two objects in
this part of the diagram are equal).

π1(U ∩ V ) −−−−−→ π1(U ∩ V )
y

yJ(U)

π1(U ∩ V )
J(V )−−−−−→ Γ

Φ−−−−−→ πx(X)
∂−−−−−→ Γ

The map Φ is the homomorphism given by the universal mapping property of the pushout group
Γ (see the commentary to Section 70). If we can show that ∂ oΦ is the identity, then it will follow
that Φ is injective. Since we already know that Φ is surjective (see Section 70), it will follow that
Φ is an isomorphism, and the proof will be complete.

By the construction of the covering space E and the map ∂, it follows immediately that
∂ oiU∗ = ∂ oΦ oJ(U) = J(U) and ∂ oiV ∗ = ∂ oΦ oJ(V ) = ∂ oJ(V ). Since the identity 1Γ on Γ
satisfies 1γ

oJ(U) = J(U) and 1γ
oJ(V ) = J(V ), It follows that the identity and ∂ oΦ agree on the

images of J(U) and J(V ). Since these sets generate Γ, it follows that ∂ oΦ = 1Γ, and as noted
before this suffices to complete the proof of the Seifert-van Kampen Theorem.

In fact, the covering space E constructed in the proof is simply connected. This will follow
if we can show that ∂ is an isomorphism, for the latter will imply that the kernel of ∂ — which
is isomorphic to the fundamental group of E — must be trivial; to see the assertion regarding ∂,
note that the proof implies that Φ is an isomorphism, and since ∂ oΦ is the identity it follows that
∂ = Φ−1.

FURTHER COMMENTS ON MUNKRES, CHAPTER 13

There are some noteworthy similarities between the classification of based covering spaces over
a topological space and the classification of subfields in a Galois extension of a field. In both
cases, the objects of interest are classified by subgroups of a naturally associated group — the
fundamental group π1(B, b0) in the case of covering spaces and the Galois group G in the case of a
Galois extension K/F . In the case of topological spaces, if π1(E1, e1) is contained in π1(E2, e2), then
there is a covering space projection q : E2 → E1 such that the respective covering space projections
pi : Ei → B satisfy p2 = p1

oq, and in the case of Galois extensions if H1 is a subgroup of H2

then the corresponding subfields Ei satisfy E2 ⊂ E1. In both cases the objects which correspond
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to normal subgroups are characterized by special properties. For Galois extensions, H is normal
in the Galois group G if and only if the corresponding subfield E is a Galois extension of F , and
in this case the Galois group of E/F is isomorphic to G/H. For covering spaces, H is normal in
the fundamental group if and only if the corresponding covering space is regular or normal, which
means that the covering space has a group of covering space transformations which are transitive
on the inverse image of the base point, and this group of covering transformations is isomorphic to
the quotient π1(B, b0)/H. Because of this similarity, some writers say that the group of covering
space transformations of a regular covering space projection is the Galois group of the covering
space data. Further information and reference are given at the following online site:

http://planetmath.org/encyclopedia/ClassificationOfCoveringSpaces.html

Munkres, Section 83

Unless specifically stated otherwise, all graphs will be finite, and we shall also assume that we
are working with finite linear graphs in the sense of Munkres except in some exercises.

Definition. Let (X, E) be a finite linear graph. A subgraph (X0, E0) is given by a subfamily
E0 ⊂ E such that X0 is the union of all the edges in E0. It is said to be a full subgraph if two
vertices v and w lie in X0 and there is an edge E ∈ E joining them, then E ∈ E0.

The following basic result is an elaboration of the first lemma in Section 84:

PROPOSITION. If (X, E) is a finite linear graph, then X is connected if and only if for each
pair of distinct vertices v and w there is an edge-path sequence E1, · · · , En such that v is one
vertex of E1, w is one vertex of En, for each k satisfying 1 < k ≤ n the edges Ek and Ek−1 have
one vertex in common, and v and w are the “other” vertices of E1 and En. Furthermore, X is a
union of finitely many components, each of which is a full subgraph.

Proof. First of all, since every point lies on an edge, it follows that every point lie in the connected
component of some vertex. In particular, there are only finitely many connected components.
Define a binary relation on the set of vertices such that v ∼ w if and only if the two vertices are
equal or there is an edge-path sequence as in the statement of the proposition. It is elementary to
check that this is an equivalence relation, and that vertices in the same equivalence class determine
the same connected component in X.

Given a vertex v, let Yv denote the union of all edges containing vertices which are equivalent
to v in the sense of the preceding paragraph. If we choose one vertex v from each equivalence class,
then we obtain a finite, pairwise disjoint family of closed connected subsets whose union is X, and
it follows that these sets are must be the connected components of X. In fact, by construction each
of these connected component is a full subgraph of (X, E).

Frequently it is convenient to look at edge-path sequences that are minimal or simple in the
sense that one cannot easily extract shorter edge-path sequences from them. Specifically, if we have
an edge-path sequence E1, · · · , En such that for some i < j the common vertices vi ∈ Ei∩Ei−1 and
vj ∈ Ej ∩ Ej−1 are equal, then clearly we can obtain a shorter path by eliminating Ei, · · · Ej−1.
Therefore we shall say that an edge-path sequence is reduced if the vertices vi as above are distinct.

IMPORTANT: If we let v0 and vn denote the vertices of E1 and En that are not given
by intersections of adjacent edges as in the preceding paragraph, then we are NOT making any
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assumptions about whether or not these two vertices are equal. If they are, then we shall say that
the edge-path sequence is closed or that it is a simple circuit or simple cycle.

Munkres, Section 84

If we restrict attention to finite graphs, then the existence of a maximal tree can be established
without using Zorn’s Lemma; it suffices to take a tree with the largest number of edges (this is
possible since the whole graph only has finitely many edges).

We shall need the following strengthening of Theorem 84.3:

THEOREM. If (T, E) is a tree and v is a vertex of this graph, then {v} is a strong deformation
retract of X.

Proof. This is trivial for graphs with one edge because they are homeomorphic to the unit
interval. Suppose now that we know the result for trees with at most n edges, and suppose that
(T, E) has n+ 1 edges.

By Lemma 84.2 we may write T = T0 ∪ A where A is an edge and T0 is a tree with n edges
such that A ∩ T0 is a single vertex w. Let y be the other vertex of A. The proof splits into cases
depending upon whether or not the vertex v of T is equal to y, w or some other vertex in T0.

We shall need the following two results on strong deformation retracts; in both cases the proofs
are elementary:

(1) Suppose X is a union of two closed subspaces A∪B, and let A∩B = C. If C is a strong
deformation retract of both A and B, then C is a strong deformation retract of X.

(2) Suppose X is a union of two closed subspaces A∪B, and let A∩B = C. If C is a strong
deformation retract of B, then A is a strong deformation retract of X.

Suppose first that the vertex is w. Then {w} is a strong deformation retract of both A and
T0, so by the first statement above it is a strong deformation retract of their union, which is T .

Now suppose that the vertex is y. Then the second statement above implies that A is a strong
deformation retract of T . Since {y} is a strong deformation retract of A, it follows that {y} is also
a strong deformation retract of T .

Finally, suppose that the vertex v lies in T0 but is not w. Another application of the second
statement implies that T0 is a strong deformation retract of T , and since {v} is a strong deformation
retract of T0, it follows that {v} is also a strong deformation retract of T .

We shall also give a slightly different proof of Theorem 84.7 in which the role of Lemma 84.6
is replaced by the following:

PROPOSITION. Suppose that the connected graph (X, E) contains a maximal tree T such that
X is the union of T with a single edge E∗. Then X is homotopy equivalent to S1.

Proof. Since T is a maximal tree, the vertices of E∗ lie in T . If a and b are these vertices, then
there is a reduced edge-path sequence E1, · · · , En joining a to b, and if we let Γ be the union of
the E − i’s and E∗, it follows that Γ must be homeomorphic to S1. By construction Γ determines
a subgraph of X. For the sake of uniformity, set v0 = a and vn = b.
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We claim that Γ is a strong deformation retract of X. Let Y be the subgraph obtained by
removing the edges E∗ and Ei from E , and for each i let Yi be the component of vi. By our
assumptions it follows that Y and the subgraphs Yi are trees. It will suffice to prove that if i 6= j
then vj 6∈ Yi, for then we have Yi ∩ Γ = {vi} and we can repeatedly apply the criteria in the
previous argument to show that Γ is a strong deformation retract of X.

Suppose now that vj 6∈ Yi for some j 6= i. Then there is some reduced edge-path sequence
F1, · · · , Fm joining vi to vj in Yi. Since the vertices of the edges Fr contain at least one vj other
than vi, there is a first edge in the sequence Fs which contains such an edge, say vk. Of course,
none of the edges Fr lies in Γ. However, we also know that there is a reduced edge path sequence in
Γ∩T which joins vj to vk, and we can merge this with the edge-path sequence F1, · · · , Fs (whose
edges lie in T but not Γ) to obtain a reduced cycle in T . Since T is a tree, this is a contradiction,
and therefore we must have Yi ∩ Γ = {vi}. As noted before, this suffices to complete the proof.

Alternate proof of Theorem 84.7. Let T be a maximal tree in the connected graph X, and
let F1, · · · , Fb denote the edges of X which do not lie in T . Let W ⊂ X be the open set obtained
by deleting exactly one non-vertex point from each of the edges Fi, and let Uj = W ∪ Fj . It then
follows that each Uj is an open subset of X and if i 6= j then Ui ∩ Uj = W . Furthermore T is a
strong deformation retract of W and for each subset of indices i1, · · · , ik the set Fi1 ∪ Fik

is a
strong deformation retract of Ui1 ∪ Uik

. In particular, we know that the sets W and Ui are all
arcwise connected. By the preceding result we know that F1 and U1 are homotopy equivalent to
S1, and we claim by induction that the fundamental groups of F1 ∪ · · · ∪ Ft and U1 ∪ · · · ∪ Ut

are free on t generators. For if the result is true for t ≥ 1, then we have

⋃

i≤t+1

Ui =




⋃

i≤t

Ui


 ∪ Ut+1 , W =




⋃

i≤t

Ui


 ∩ Ut+1

so that the Seifert-van Kampen Theorem implies that the fundamental group of U1 ∪ · · · ∪ Ut+1

is the free product of the fundamental groups of U1 ∪ · · · ∪ Ut and Ut+1. By induction the group
for the first space is free on t generators while the group for the second is infinite cyclic, and this
completes the proof of the inductive step.

The Euler characteristic of a graph

If (X, E) is a connected graph, then the preceding discussion shows that the fundamental group
of X is a free group on a finite set of free generators. We would like to have a formula for the
number of generators which can be read off immediately from the graph structure and does not
require us to find an explicit maximal tree inside the graph.

Definition. The Euler characteristic of (X, E) is the integer χ(X, E) = v − e, where e is the
number of edges in the graph and v is the number of vertices.

If there is exactly one edge, then clearly v = 2, e = 1, and the Euler characteristic is equal to
1 = 2 − 1. The first indication of the Euler characteristic’s potential usefulness is an extension of
this to arbitrary trees.

PROPOSITION. If (T, E) is a tree, then χ(T, E) = 1.

Proof. Not surprisingly, this goes by induction on the number of edges. We already know the
formula if there is one edge. As before, if we know the result for trees with n edges and T has
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n+ 1 edges we may write T = T0 ∪A, where T0 is a tree, A is a vertex, and their intersection is a
single point. For each subgraph Y let e(Y ) and v(Y ) denote the numbers of edges and vertices in
Y . Then we have e(T ) = e(T0) + 1, v(T ) = v(T0) + 1, and hence we also have

χ(T ) = v(T )− e(T ) = [v(T0) + 1]− [e(T0) + 1] = v(T0)− e(T0) = 1

which is the formula we wanted to verify.

THEOREM. If (X, E) is a connected graph, then the fundamental group of X is a free group on
1− χ(X, E) generators.

Proof. We adopt the notational conventions in the preceding argument. Let T be a maximal
tree in X, and suppose that there are k edges in X which are not in T , so that the fundamental
group is free on k generators. By construction we know that v(T ) = v(X) and e(X) = e(T ) + k,
and by the preceding result we know that the Euler characteristic of T is 1. Therefore we have

χ(X, E) = v(X) − e(X) = v(T )− e(T )− k = 1− k

so that k = 1− χ(X, E) as required.

In the exercises we note that the theorem is also valid for the edge-path graphs as defined in
the files for this course.

COROLLARY. If two connected graphs X and X ′ are base point preservingly homotopy equiv-
alent as topological spaces, then they have the same Euler characteristics.

In particular, the corollary applies if X and X ′ are homeomorphic. For this reason we often
suppress the edge decomposition and simply use χ(X) when writing the Euler characteristic.

Proof. If X and X ′ are homotopy equivalent, then their fundamental groups are isomorphic, and
hence they are both free groups with the same numbers of generators. Since the Euler characteristics
can be expressed as functions of these numbers of generators, it follows that the Euler characteristics
of X and X ′ must be equal.

The following special case will be used in the commentary for Section 85:

EXAMPLE. Let M denote the grid subset of R2 defined by all (x, y) such that at least one
coordinate is an integer, and for integers a < b and c < d let M(a, b; c, d) denote the intersection of
M with the rectangular region [a, b]× [c, d]. It follows that this set is a finite graph whose edges are
given by the edges of squares having the form [p, p+ 1]× [q, q+ 1], where a ≤ p < b and c ≤ q < d.
If one counts edges and vertices, then an application of the preceding theorem will show that the
fundamental group of M(a, b; c, d) is a free group on (b−a) ·(d−c) generators. Checking the details
will be left as an exercise.

Munkres, Section 85

The goal of the commentary to this section is to prove some results on subgroups of free groups
using the fundamental groups of graphs. We begin with the following result on subgroups of finite
index:

53



PROPOSITION. Let F be a free group on k generators, and let H be a subgroup of index n.
Then H is free on nk − n+ 1 generators.

Proof. Let (X, E) be a connected graph whose fundamental group is free on k generators; one
method of constructing such a graph is to take edges Ai, Bi and Ci for 1 ≤ i ≤ k, where the
edges of Ai are x, pi, and qi, the edges of Bi are x, ri, and si, and the edges of Bi are x, ui, and
vi (topologically, X is a union of k circles such that each pair intersect at x and nowhere else).
By the formula relating the number of generators for F and the Euler characteristic, we know
that k = 1 − χ(X), or equivalently χ(X) = 1 − k. Let Y be the connected covering space of X
corresponding to the subgroup H. Then Y is a graph, and the fundamental group of Y is H, so
that H is a free group.

We know that the number of free generators for H is given by 1−χ(Y ), so it is only necessary
to compute this Euler characteristic. Let e and v be the number of edges and vertices for (X, E),
so that n = 1− χ(X), where χ(X) = v − e. Since Y is an n-sheeted covering of X, if we take the
associated edge decomposition of Y (such that each edge of Y maps homeomorphically to an edge
of X) we see that the numbers of vertices and edges for Y are nv and ne respectively, so that

χ(Y ) = n · χ(X) .

Therefore the number of generators for the fundamental group of Y is given by

1− χ(Y ) = 1− n · χ(X) = 1− n(1− k) = nk − n+ 1

which is what we wanted to prove.

We shall conclude this commentary by proving the following basic result:

THEOREM. Let F be a free group on two generators, and let [F, F ] be its commutator subgroup.
Then [F, F ] is a free group on a countably infinite set of generators.

A somewhat different subgroup H ⊂ F which is free on infinitely many generators is described
in one of the exercises.

The proof of the theorem uses a good model for the covering space of S1 ∨ S1 associated to
the commutator subgroup [F, F ], and this is based on the following observation:

PROPOSITION. Given a pointed space (X,x0), let A ⊂ X be a subset such that x0 ⊂ A and
the map induced by inclusion i∗ from π1(A, x0) to π1(X,x0) is onto. Assume that bothX and A are

arcwise connected and semilocally simply connected. If p : X̃ → X denotes the universal covering
space data, then the restricted projection p−1[A]→ A defines an arcwise connected covering space
which corresponds to the subgroup Kernel (i∗).

Proof. Let F denote the inverse image of {x0}. Since the map of fundamental groups is onto, it

follows that each point in F can be connected to the base point of X̃ and p−1[A] by a continuous
curve in the latter space. Since we are assuming that A is arcwise connected and locally arcwise
connected (in fact, A is semilocally simply connected), it follows that p−1[A] is arcwise connected.

The action of π1(X) on X̃ by covering transformations sends p−1[A] to itself, and by construction
we know that the map ∂ : π1(A, x0)→ π1(X,x0) is merely the mapping i∗. Therefore by the results
of Section 81 we know that the fundamental group of p−1[A] is equal to the kernel if i∗.
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COROLLARY. If D denotes the commutator subgroup of π1(S
1∨S1, e), then the covering space

of S1 ∨S1 corresponding to D is given by the set M of all points (x, y) ∈ R2 such that at least one
coordinate is an integer.

This follows because D is the kernel of the standard map from pi1(S
1 ∨S1, e) to π1(T

2, e) and
the universal covering space of T 2 is given by p× p : R×R→ S1 × S1.

By the preceding discussion, the proof of the theorem amounts to showing that the fundamental
group of M is a free group on a countably infinite set of free generators. We shall do this by
showing that the fundamental groups of the graphs M(a, b; c, d) from the preceding section yield
good approximations to the fundamental group of M.

The first step in this process is to see what happens to π1

(
M(a, b; c, d)

)
if we increase the

length or width of the rectangle:

(1) Suppose that p is an integer such that a < p < b. Then the fundamental group of
M(a, b; c, d) is isomorphic to the free product of the fundamental groups M(a, p; c, d) and
M(p, b; c, d) such that the subgroup inclusions correspond to the maps of fundamental
groups induced by M(a, p; c, d) ⊂M(a, b; c, d) and M(p, b; c, d) ⊂M(a, b; c, d).

(2) Suppose that q is an integer such that c < q < d. Then the fundamental group of
M(a, b; c, d) is isomorphic to the free product of the fundamental groups M(a, b; c, q) and
M(a, b; q, d) such that the subgroup inclusions correspond to the maps of fundamental
groups induced by M(a, b; c, q) ⊂M(a, b; c, d) and M(a, b; q, d) ⊂M(a, b; c, d).

Since the second statement can be derived from the first by switching the roles of the first
and second coordinates, it is only necessary to prove the first statement. The first step is to
thicken the sets M(a, p; c, d) and M(p, b; c, d) to open subsets U and V such that the inclusions are
strong deformation retracts. Specifically, take U to be the set of all points in M(a, b; c, d) whose
first coordinate is less than p + 1

2 and take V to be the set of all points in M(a, b; c, d) whose
first coordinate is greater than p − 1

2 . It then follows that the simply connected set {p} × [c, d]
is a strong deformation retract of U ∩ V , and therefore the fundamental group of M(a, b; c, d) is
isomorphic to the free product of the fundamental groups of U and V such that the subgroup
inclusions correspond to the maps of fundamental groups induced by the inclusion mappings. Since
the latter are isomorphic to the fundamental groups of M(a, p; c, d) and M(p, b; c, d), the conclusion
in (1) follows immediately. As noted above, similar reasoning establishes (2).

Using (1) and (2), we shall establish the next step:

(3) For all positive integers n, the inclusion of M(−n, n;−n, n) in M(−n−1, n+1;−n−1, n+1)
is a monomorphism of free groups such that the image of a set of free generators for
the fundamental group of M(−n, n;−n, n) extends to a set of free generators for the
fundamental groupo of M(−n− 1, n+ 1;−n− 1, n+ 1).

This can be shown by applying the previous observations to the following sequence of inclusions:

M(−n, n;−n, n) ⊂ M(−n, n+ 1;−n, n) ⊂ M(−n− 1, n+ 1;−n, n) ⊂

M(−n− 1, n+ 1;−n, n+ 1) ⊂ M(−n− 1, n+ 1;−n− 1, n+ 1)

By the results of the preceding section the fundamental group of M(−n, n;−n, n) is free on 4n2

generators. Let F∞ be the free group on a countably infinite set of generators xi, and identify the
fundamental group of M(−n, n;−n, n) with the first 4n2 generators in the sequence; by (3), this
can be done coherently for all n.
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Using (3) and the preceding paragraph, we may construct a group homomorphism from F∞

to π1(M) such that for each n the restriction to the subgroup generated by the first 4n2 elements
of the sequence {xi} corresponds to the map of fundamental groups associated to the inclusion of
M(−n, n;−n, n) in M. We claim this map is an isomorphism.

The key fact in proving the claim is that every compact subset of M is contained in some
M(−n, n;−n, n). This immediately implies that every element of π1(M) comes from the fun-
damental group of some subspace M(−n, n;−n, n), and the latter in turn implies that the map
from F∞ to π1(M) is onto. Similarly, if we have a closed curve in some M(−n, n;−n, n) which
is nullhomotopic in M, then there is some m ≥ n such that the closed curve is nullhomotopic in
M(−m,m;−m,m). Since the inclusion mappings of fundamental groups are monomorphisms, it
follows that the closed curve must already by nullhomotopic in M(−n, n;−n, n). This implies that
the map from F∞ to π1(M) is 1–1, and if we combine this with the previous observations we see
that this homomorphism must be an isomorphism.

Comparison with Munkres

As indicated by the title of Section 85, the main result in this section of the text (Theorem
85.1) describes the isomorphism types of all subgroups of a free group (namely, they are free). Its
proof requires the use of infinite graphs, which are defined and studied in the Munkres but not in
these commentaries. The two main steps in the argument are similar in nature to results discussed
here:

(1) Proof that the fundamental group of an infinite graph is a free group (see Theorem 84.7).

(2) Construction of a graph structure on a covering space of an arbitrary graph (see Theorem
83.4).

One can view Theorem 85.1 as a special case of the previously mentioned Kurosh Subgroup
Theorem.

A fundamentally important construction relating group theory and algebraic topology is de-
scribed in Section 1.B of Hatcher. The Wikipedia articles

http://en.wikipedia.prg/wiki/Geometric group theory

http://en.wikipedia.prg/wiki/Group cohomology

contain more detailed additional information (and further links) concerning the ways in which
topology and group theory — particularly infinite group theory — have interacted with each other
in mathematical research during the past century.
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