CLARIFICATIONS TO COMMENTARIES

PROOF OF THE SEIFERT-VAN KAMPEN THEOREM. (pp. 48-49) Here are some additional details and modifications. We begin with material in the final two paragraphs of page 48:

We claim that E is arcwise connected ... by construction, if e_{1} and e_{2} are two points in F such that $g \cdot e_{1}=e_{2}$ for some g in the image of the fundamental group of U, it follows that e_{1} can be joined to e_{2} by a continuous curve whose image lies in the inverse image of U in E; a similar conclusion holds if we replace U be V in the preceding statement.

It is easier to prove the connectedness of E if we modify the preceding assertion as follows: Suppose that e_{0} is the base point of E and $g \in \Gamma$, and let $h \in \Gamma$ be an element which lies in the image of either $\pi_{1}(U)$ or $\pi_{1}(V)$. Then $g e_{0}$ and $g h e_{0}$ lie in the same component of E. - Given this, one can use the fact that the images of $\pi_{1}(U)$ and $\pi_{1}(V)$ generate Γ to conclude that every point in F lies in the same component as e_{0} and hence E is connected. Specifically, if we write $g=h_{1} \cdots h_{k}$ for h_{i} satisfying the given conditions and lets g_{0} denote the product of the first i factors for $0 \leq i \leq k$ (with $g_{0}=1$), then by induction we have that each $g_{i} \cdot e_{0}$ lies in the same component of E as e_{0}.

We shall only consider the case where h comes from the fundamental group of U; the other case follows by systematically replacing U with V throughout the discussion. It will help to have some notation. Let $k_{U}: \widetilde{U} \rightarrow E$ be the inclusion map given by the construction of U, and let u_{0} denote the base point of \widetilde{U}, so that k_{U} maps u_{0} to e_{0}. Suppose that $h \in \Gamma$ lies in the image of $\pi_{1}(U)$, and let h^{\prime} map to h. By construction we know that k_{u} sends $h^{\prime} u_{0}$ to $h e_{0}$. Let η be the curve in \widetilde{U} joining u_{0} to $h^{\prime} u_{0}$. Then it follows that $k_{U}{ }^{\circ} \eta$ joins e_{0} to $h e_{0}$, proving the assertion when h comes from $\pi_{1}(U)$; as noted before, a similar argument applies if h comes from $\pi_{1}(V)$, and by the remarks in the preceding paragraph it follows that E is connected as required.

Next, we shall examine the following statements from page 49 more closely:
[We have] the diagram of morphisms displayed below, in which the square is commutative (all compositions of morphisms between two objects in this part of the diagram are equal).

The map Φ is the homomorphism given by the universal mapping property of the pushout group Γ (see the commentary to Section 70). If we can show that $\partial{ }^{\circ} \Phi$ is the identity, then it will follow that Φ is injective. Since we already know that Φ is surjective (see Section 70), it will follow that Φ is an isomorphism, and the proof will be complete.

In the subsequent discussion on page 49, the key point is to prove that the composites

$$
\pi_{1}(U) \longrightarrow P \longrightarrow \pi_{1}(X) \longrightarrow \Gamma \quad \pi_{1}(V) \longrightarrow P \longrightarrow \pi_{1}(X) \longrightarrow \Gamma
$$

are just the standard maps $J(U)$ and $J(V)$ from $\pi_{1}(U)$ and $\pi_{1}(V)$ into the pushout Γ. It will be helpful to let $i_{U *}$ and $i_{V *}$ denote the maps of fundamental groups induced by the inclusions of U and V in X; by construction we have $i_{U *}=\Phi^{\circ} J(U)$ and $i_{V *}=\Phi^{\circ} J(V)$.

As before, it suffices to show that $\partial^{\circ} \Phi^{\circ} J(U)=J(U)$, for the argument in the other case will follow by systematic substitution of V for U throughout. - Let h^{\prime} be an element in $\pi_{1}(U)$, and let h be its image in Γ. By construction, the covering space transformation determined by $\partial{ }^{\circ} \Phi(h) \in \Gamma$ sends the base point e_{0} to $\Phi(h) \cdot e_{0}=i_{U *}\left(h^{\prime}\right) \cdot e_{0}$. On the other hand, we also know that the covering space transformation of \widetilde{U} associated to h^{\prime} sends u_{0} to $h^{\prime} \cdot u_{0}$, and if we apply the mapping k_{U} from the previous discussion, it follows that the covering space transformation of E associated to $J(U)\left(h^{\prime}\right)$ sends $e_{0}=k_{U}\left(u_{0}\right)$ to $i_{U *}\left(h^{\prime}\right) \cdot e_{0}$.

The preceding argument shows that $\partial^{\circ} i_{U *}=J(U)$, and the identity in the first sentence of the preceding paragraph then follows because $i_{U *}=\Phi^{\circ} J(U)$. As noted above, we have a similar identity involving V. Taken together, these imply that the restrictions of $\partial{ }^{\circ} \Phi$ to the images of $J(U)$ and $J(V)$ are the identity, and since these images generate Γ it follows that $\partial \circ \Phi$ must be the identity, as claimed.■

