CLARIFICATIONS TO COMMENTARIES - II

Reduced paths and simple circuits. The definitions of these on page 50 of the commentaries were somewhat informal, and they should be amplified as follows.
Definition. Let E_{1}, \cdots, E_{n} be an edge-path sequence such that the vertices of E_{i} are \mathbf{v}_{i-1} and \mathbf{v}_{i}. This sequence is said to be reduced if $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ are distinct and either $n \neq 2$ or else $\mathbf{v}_{0} \neq \mathbf{v}_{2}$ (the latter case is just a sequence with $E_{2}=E_{1}$, physically corresponding to going first along E_{1} in one direction and then back in the opposite direction).

The following result is more or less predictable but still important.
PROPOSITION. If two distinct vertices \mathbf{x} and \mathbf{y} can be connected by an edge-path sequence, then they can be connected by a reduced sequence.

Proof. Take a sequence with a minimum number of edges. We claim it is automatically reduced. If not, then there is a first vertex which is repeated, and a first time at which it is repeated. In other words, there is a minimal pair (i, j) such that $i<j$ and $\mathbf{v}_{i}=\mathbf{v}_{j}$, which means that if (p, q) is any other pair with this property we have $p \geq i$ and $q>j$. If we remove E_{i+1} through E_{j} from the edge-path sequence, we obtain a shorter sequence which joins the given two vertices.

Note that the converse is false. For example, take X to be the triangle graph in the plane whose vertices are the three noncollinear points \mathbf{a}, \mathbf{b} and \mathbf{c}, and whose edges are the three line segments joining these pairs of points. Then $\{\mathbf{a b}, \mathbf{b c}\}$ and $\{\mathbf{a c}\}$ are two reduced edge-path sequences joining a to \mathbf{c} such that one consists of two edges and the other consists of one edge.

Another consequence of the definitions worth noting is that every simple circuit in a graph contains at least three edges.

