
EXERCISES FOR MATHEMATICS 205B

WINTER 2008

Full information on the references for the course (Munkres and Hatcher) appear in the file
math205Bcommentaries.pdf. Problems marked with ? are usually somewhat challenging and
should be regarded as optional.

Munkres, Section 51

Munkres, p. 330: 1–3

Additional exercises

1. Let X be a topological space, and let P be a topological space consisting of exactly one point
(it has a unique topology). Explain why the set of homotopy classes [P,X] is in 1–1 correspondence
with the set of arc components of X.

2. Let Y be a nonempty topological space with the indiscrete topology (i.e., ∅ and Y are the
only open sets), and let X be an arbitrary nonempty topological space. Prove that [X,Y ] consists
of a single point. [Hint: For all topological spaces W , every map of sets from W to Y is continuous.
Using this, show that if A ⊂ B is a subspace and g : A → Y is continuous, then g extends to a
continuous map from B to Y .]

3. Let Y be a nonempty space with the discrete topology (all subsets are open), and let X be
a nonempty connected space. Prove that there is a 1–1 correspondence between [X,Y ] and Y .

Munkres, Section 52

Munkres, pp. 334–335: 1–7

Additional exercises

1. Let X be the Cantor Set (see Munkres, p. 178), and let P be a space consisting of a single
point. Prove that [P, Y ] is uncountable, and using this explain why X does not have the homotopy
type of an open subset in some Euclidean space Rn. [Hint: By construction X is an intersection of
a decreasing sequence of compact sets Xn, where each Xn is a union of 2n pairwise disjoint closed
intervals, each of which has length 1/3n. If γ is a continuous map from [0, 1] to Xn, why does this
imply that |γ(t) − γ(0)| < 3−n for all t? What does this imply for continuous maps from [0, 1] to
X and for the set of homotopy classes [P,X]? Finally, if a space Y has the homotopy type of an
open set in some Rn, what can one say about the cardinality of [P, Y ]? Combine the answers of
the last two questions to complete the argument.]

2. Let U be an open subset of Rn. Modify the argument in the commentary for § 51 of Munkres
to show that π1(U, u0) is at most countable, where u0 ∈ U is arbitrary.
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3. Suppose that X, Y and Z are nonempty topological spaces and that p : Y × Z → Y and
q : Y × Z → Z are the projections onto the two factors. Prove that the map ϕ : [X,Y × Z] →
[X,Y ] × [X,Z] which sends a class u = [f ] to ([p of ], [q of ]) is 1–1 and onto.

4. Suppose that X is a nonempty compact topological space and Y is an increasing union
∪n Cn of a sequence of compact subspaces such that every compact subset of Y is contained in
some subset Cn. Let jn : Cn → Y be the inclusion, and for n ≤ m let in,m : Cn → Cm denote the
inclusion (hence jn = jm

oin,m for all n and m).
(i) Prove that every nonempty open subset in Rn is a describable as such a countable union

of compact subsets. [Hint: Use the Lindelöf Property.]
(ii) Explain why every class u ∈ [X,Y ] has the form (jn)∗(v) for some n and some v ∈ [X,Cn].
(iii) Suppose we are given v0 and v1 in [X,Cn] such that (jn)∗(v0) = (jn)∗(v1). Prove that

there is some m ≥ n such that (in,m)∗(v0) = (in,m)∗(v1).

5. Let U be an open subset of Rn. A broken line curve is a continuous curve γ : [a, b] → U
such that the following holds: There is a partition of [a, b] given by

a = x0 < x1 < · · · < xk = b

such that the restriction of γ to each closed subinterval [xi−1, xi] is a straight line segment which
has a parametrization of the form

β(t) =

(
xi−1 − t

∆i

)
· γ(xi−1) +

(
t − xi

∆i

)
· γ(xi)

where ∆i = xi − xi−1. — Prove that every element of π1(U, u0) (where u0 ∈ U) is representable
by a broken line curve.

6. Let X be a topological space, let x0 ∈ X, and let X0 denote the path component of x0.
Explain why π1(X,x0) is isomorphic to π1(X0, x0).

7.? Let X be an arcwise connected space, let x0 ∈ X, and let F ;π1(X,x0) → [S1, X] be the map
which takes the base point preserving homotopy class of a closed curve γ to the ordinary homotopy
class (the free homotopy class) of γ viewed as a function from S1 to X.

(i) Prove that F is onto. [Hint: Let α be a closed curve whose initial and final values are
given by x1, and let γ be a closed curve joining x0 to x1. Then (γ + α) + (−γ) is a closed curve
whose initial and final values are given by x0. Prove that α is freely homotopic to (γ + α) + (−γ).]

(ii) Prove that F (g1) = F (g2) if and only if there is some h ∈ π1(X,x0) such that g2 = h g1 h−1.
[Hint: If F (g1) = F (g2) then one has a homotopy from [0, 1]× [0, 1] to X such that the restrictions
to [0, 1]×{0} and [0, 1]×{1} represent g1 and g2 and the restrictions to {0}× [0, 1] and {1}× [0, 1]
are the same curve. The initial and final values of this curve are x0 so it represents an element h
in the fundamental group.]

8.? Let n ≥ 2, and let x0 ∈ Sn. Prove that π1(S
n, x0) is trivial. [Hint: Let i : Sn → Rn+1−{0}

denote the inclusion mapping, and let r : Rn+1 − {0} denote the retraction map sending v to
|v|−1 ·v ∈ Sn. Both of these maps are base point preserving, and the composite r oi is the identity.
Using this, show that it suffices to prove that if γ is a closed curve in Sn, then i oγ is homotopic
to a constant map. By the preceding exercise the latter curve is base point preservingly homotopic
to a broken line curve. Explain why the image of such a map is contained in a finite union of
2-dimensional vector subspaces in Rn+1. One can now apply theorems in linear algebra or 205A
to show that this finite union is a proper subset, and in fact one can find a nonzero vector w such
that all nonzero multiples of w lie in the complement of this set. If β is the broken line curve, this
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implies that the image of r oβ is contained in the complement of a point in Sn. Using this, show
that the class [γ] = [r oβ] in π1(S

n, x) lies in the image of π1(S
n − {w}, x0) for some w. Using

the fact that Sn − {w0} is homeomorphic to Rn, explain why the image of π1(S
n − {w}, x0) in

π1(S
n, x0) must be trivial.]

9.? (This exercise involves concepts from category theory that are not officially part of the

course, and as such it is even more optional than most such exercises.)

Let X be an arcwise connected topological space. For each pair of points a, b ∈ X define
∏

X(a, b)
to be the set of endpoint-preserving path homotopy classes of curves from a to b, and for each
triple of points a, b, c define a binary operation

Φa,b,c :
∏

X(a, b) ×
∏

X(b, c) →
∏

X(a, c)

by Φ([α], [β]) = [α + β].
(i) Explain why Φ is well-defined and

∏
X(a, a) is the fundamental group of (X, a).

(ii) Show that (X,
∏

X,Φ) is a category in which all morphisms in each set
∏

X(a, b) are
isomorphisms (i.e., a groupoid). This category is known as the fundamental groupoid of X, and
in some sense it is the ultimate “basepoint free” version of the fundamental group. [Hint: Show
that the constant classes [Ca] behave like identities and that [−α] is an inverse to [α]. Versions of
these facts, formulated without the category-theoretic language, were used in the proof that the
isomorphism type of fundamental group for an arcwise connected space does not depend upon the
choice of base point.]

Munkres, Section 53

Munkres, pp. 341: 1–6

Additional exercises

1. Suppose we are given covering maps pi : Ei → X (i = 1, 2) and a factorization p : E1 → E2

such that p1 = p2
op. Prove that p is also a covering map.

2. Let p : E → X be a covering map, and let f : Y → X be continuous. Define the pullback

Y ×X E := {(e, y) ∈ Y × E| f(y) = p(e)}.

Let p(Y,f) = projY |Y ×X E.
(i) Prove that p(Y,f) is a covering map. Also prove that f lifts to E if and only if there is a

map s : Y → Y ×X E such that p(Y,f)s = 1Y .
(ii) Suppose also that f is the inclusion of a subspace. Prove that there is a homeomorphism

h : Y ×X E → p−1(Y ) such that p oh = p(Y,f).
NOTATION. If the condition in (ii) holds we sometimes denote the covering space over Y by

E|Y (in words, E restricted to Y ).

3. Suppose that p : E → X is a covering space projection and X is totally disconnected
(i.e., the topology has a base of sets that are both open and closed). Prove that E is also totally
disconnected.
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Munkres, Section 54

Munkres, pp. 347–348: 1–8

Additional exercises

1. Let T n be the product of n ≥ 3 copies of S1 with itself, and let e ∈ T n be the point
(1, · · · , 1). Prove that π1(T

n, e) is isomorphic to a direct product of n copies of Z and explain
why there is a covering space projection from Rn to T n. [Hint: The result is also true if n = 1 or
2, but these have already been shown.]

2. If f is a base point preserving continuous map from (T n, e) to itself, then by the preceding
result we know that the induced map f∗ of fundamental groups is given by an n × n matrix with
integral entries. If f is a homotopy equivalence of pointed spaces, show that this matrix must have
determinant ±1. Conversely, show that every such matrix can be realized by a base point preserving
homeomorphism from T n to itself. [Hint: For the second part, if A is an arbitrary n × n matrix
with integral entries and p : Rn → T n is the map sending (t1, · · · , tn) to (e2πi t1 , · · · , e2πi tn), prove
that there is a unique base point preserving map fA from T n to itself such that fA

op(x) = p(Ax),
where x = (t1, · · · , tn).]

Munkres, Section 55

Munkres, p. 353: 1–3

Hatcher, pp. 18–20: 3, 10
Hatcher, pp. 38–40: 11, 13, 17 (but replace S1 ∨ S1 with S1 × S1), 20

Additional exercises

1. Suppose we have A ⊂ B ⊂ X such that A is a retract of B and B is a retract of X. Prove
that A is a retract of X.

2. Suppose that A is a retract of X; let j : A → X be the inclusion mapping, and let x0 ∈ A. If
H is the image of the fundamental group of A under the mapping h∗, prove that there is a normal
subgroup K of π1(X,x0) such that the latter is generated by H and K, and we have H ∩K = {1}.
[Hint: Let r : X → A be the associated retraction, and consider the kernel of r∗.]

3. Let B be the set constructed at the beginning of the proof for Corollary 55.7 on pp. 351–352.
Prove that B is homeomorphic to D2. [Hint: Show that one can define a homeomorphism from
B to the solid circle quadrant

Q = { (x, y) ∈ R2 | x ≥ 0 , y ≥ 0 , x2 + y2 ≤ 1 }

by projecting down to the first two coordinates. Next, show that this quadrant is homeomorphic
to the closed semicircular region

Q = { (x, y) ∈ R2 | x ≥ 0 , x2 + y2 ≤ 1 }
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by the map sending (x, y) to (x2 − y2, 2xy); in terms of complex numbers this is just the map
sending z to z2. Finally, show that H is homeomorphic to the closed disk E with radius 1

2 and
center z = (0, 1

2 ); start by checking that E ⊂ H and E meets the boundary of H in the points (0, 0)
and (0, 1). Here is a sketch of the construction for the homeomorphism: The center goes to itself,
and for every other point y the image of y will be a point z + u(z− y) for a suitably construtcted
u > 0 (in other words, on the ray beginning at z and passing through y. Specifically, there is a
unique s(y, z) > 0 (in fact ≥ 1) such that the given ray meets the boundary of H at

z + s(y, z) · (z − y) .

There are two formulas for s, depending upon whether the intersection point lies on the upper
or lower curve of H; show that they define a continuous function for all y 6= z in H. It is then
necessary to show that the function sending y to

2 · s(x, y) ·
(
y − z

)

is continuous and 1–1 on H −{z}, and if we extend this to all of H by sending z to itself, then the
resulting extension is also continuous and 1–1.

COMMENT. At the top of page 352 in Munkres, there is a remark that the conclusion of the
exercise “is easy to see.” This may be true intuitively, but often such phrases can be used to avoid
writing down messy details, and it is usually appropriate to be at least somewhat skeptical of such
claims.

Munkres, Section 56

Additional exercise

1. Suppose that we are given a circle in the complex plane which is defined by the equation
|z−a| = r and parametrized in the counterclockwise sense, let z0 = a+r, and let b be a point which
does not lie on this circle. Let x(b) denote the class of this circle in π1(C − {b}, z0) ∼= Z. Prove
that x(b) is a generator of the fundamental group if |b− a| < r (so that b lies inside the circle) and
x(b) is trivial if |b − a| > r (so that b lies outside the circle). [Hints: In the first case let γ be a
small counterclockwise circle centered at b and show that the original circle is homotopic to γ. In
the second case explain why the disk bounded by the original curve lies in the complement of {b}.]

Munkres, Section 58

Munkres, p. 366: 1–3, 5–7, 9

Hatcher, pp. 18–20: 1, 2, 4, 5, 9, 13

Additional exercises

1. Prove that if f : X → Y is continuous and X and Y are Hausdorff, then the mapping
cylinder M(f) is also Hausdorff. Also prove the same result for the pointed mapping cylinder if
f is base point preserving. [Hint: Consider the unpointed case, and suppose that we are given
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distinct equivalence classes u and v such that u contains no points of Y . It follows that v consists
of exactly one point (x, t) such that t < 1. Why are there disjoint open subsets of X × [0, 1] q Y ?
containing (x, t) and X ×{1} q Y ? Next suppose that both equivalence classes contain a point of
Y ; why must each contain exactly one such point? Given the points yu and yv as in the previous
sentence, take disjoint neighborhoods of them, and show that there are disjoint open subsets of
their images in X × [0, 1] q Y such that these open sets are unions of equivalence classes. Finally,
explain how the preceding can be carried out to prove the Hausdorff property in the pointed case.]

2. Prove the analog of the mapping cylinder proposition (in the commentary) for base point
preserving maps.

3.? As noted in the next to last paragraph on page 358 of Munkres, the Figure 8 and Figure
Theta spaces have the same homotopy type, but neither is a deformation retract of the other,
and in fact neither is homeomorphic to a subspace of the other. Prove the last assertion in the
preceding sentence. [Hint: For both spaces, define a nonsingular point y to be a point such that y
has a neighborhood base of open sets V such that V − {y} has exactly 2 components. How many
singular points does each space have? For each singular point z of the Figure 8, explain why z
has a neighborhood base of open sets V such that V − {y} has exactly 4 components but there
is no similar neighborhood base for which the deleted neighborhoods all have fewer components,
and prove that every singular point of the Figure Theta has a neighborhood base of open sets V
such that V − {y} has exactly 3 components but there is no similar neighborhood base for which
the deleted neighborhoods all have fewer components. Suppose now that we have a continuous
1–1 map h from one of these spaces to the other. Explain why a singular point cannot go to a
nonsingular point, and if we have a singular point w such that every open neighborhood U of has
a subneighborhood V such that V − {w} has n components, then every neighborhood U ′ of h(w)
must have a subneighborhood V ′ such that V ′ −

{
h(w)

}
has at least n components.]

4. As in the hint for the preceding exercise, for a noteworthy family of spaces (which includes
the usual numerals and letters of the alphabet), at each point x one can define a local index,
which is an integer n such that x has a neighborhood base {Vα | α ∈ A} such that each deleted
neighborhood Vα−{x} has exactly n components, and there is no neighborhood base such that the
associated deleted neighborhoods have fewer components. Using this notion, show that there are
at least 7 homeomorphism types represented by the standard hexadecimal digits as written below
(in sans-serif type):

0 1 2 3 4 5 6 7 8 9 A B C D E F

Are new homeomorphism types added if we consider the remaining letters of the alphabet? Explain.

Munkres, Section 59

Munkres, p. 370: 1–4

Hatcher, pp. 38–40: 18(a)
Hatcher, pp. 52–55: 2, 8

Additional exercises

1. Let X be a bouquet of three circles defined formally as

S1 ∨ S1 ∨ S1 = S1 × {1} × {1} ∪ {1} × S1 × {1} ∪ {1} × S1 × {1} ⊂ T 3
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and let j : S1∨S1∨S1 → T 3 be the inclusion map. Prove that j∗ defines a surjection in fundamental
groups, and using this show that π1(S

1 ∨ S1 ∨ S1, e) cannot be generated by two elements. [Hint:

Let G be a subgroup of π1(S
1 ∨ S1 ∨ S1, e) which is generated by two elements, and explain why

j∗[G] is a proper subgroup of π1(T
3, e).]

2. Prove that π1(S
1 ∨ S1 ∨ S1, e) is not abelian. [Hint: Prove that S1 ∨ S1 is a retract of

S1 ∨ S1 ∨ S1. Also, note that if G is abelian then so is every subgroup of G.]

Munkres, Section 60

Munkres, p. 375: 1, 5

Additional exercise

1.? Let X be the a point union of S1 and RP2. Show that X has a 2-sheeted covering which is
homeomorphic to S2 ∪ A ∪ B, where A and B are homeomorphic to S1 such that A ∩ B = ∅ and
there is some e ∈ S2 such that A ∩ S2 = {e} and A ∩ S2 = {−e}. Prove that the fundamental
group of S2 ∪ A ∪ B maps onto the fundamental group of S1 ∨ S1, and use this to conclude that
the fundamental group of X must be nonabelian. [Hint: Use Theorem 54.6 in Munkres for the
final part of the problem.]

Munkres, Section 61

Munkres, p. 380–381: 1–2

Additional exercises

1. Suppose that A is a compact subset of Rn, where n ≥ 2. Prove that there is a 1–1
correspondence between the components of Rn − A and the components of Sn − A such that (i)
all but one components of these two sets are equal, (ii) in the exceptional case, the components
C1 and C2 of the respective spaces are related by the equation C2 = C1 ∪ {∞}. [Hint: Why does
Rn − A contain some set of the form { x | |x| > M }?].

2.? Using the methods in the commentary for this section, prove that a piecewise smooth simple
arc in R is locally flat; the proof should be a combination of the arguments given in the commentary
for smooth curves and for broken lines.

3. Suppose that Γ1 and Γ2 are the images of locally flat simple closed curves in R2, and suppose
that each component of Γ2 contains a point of Γ1. Prove that Γ1 ∩Γ2 contains at least two points.
Give examples where one curve is a circle, the other is an ellipse, and the number of intersection
points is 3 or 4. Finally, give rough sketches of examples for which the number of intersection points
is an arbitrary integer ≥ 5 (you do not have to give formal proofs for this part of the problem).
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Munkres, Section 63

Munkres, p. 384–385: 5
Munkres, p. 393–394: 1

(Assume curves are locally flat if it seems helpful to do so.)

Munkres, Section 64

Munkres, p. 398: 1(a)

Additional exercises

1. Prove that the Figure 8 space is homeomorphic to the underlying topological space of a
linear graph (in the sense of Munkres).

2.? Suppose that we are given a linear graph structure on the Figure 8 space as in the preceding
exercise, and suppose that F ⊂ R2 is a locally tame subset which is homeomorphic to the Figure 8
space. Write F = A ∪ B where A and B are simple closed curves and their intersection is a single
point. Prove that R2 − F has three components U, V, W such that the set of limit points for one
component is A, the set of limit points for another component is B, and the set of points for the
remaining component is A ∪ B.

Munkres, Section 68

Munkres, p. 421: 2, 3

Additional exercise

1. Given three groups G, H and K, use the Universal Mapping Property to show that
iterated free products (G ∗H) ∗K and G ∗ (H ∗K) are both isomorphic to the threefold free product
G ∗H ∗K. Similarly, show that G ∗H is isomorphic to H ∗G.

Munkres, Section 69

Munkres, p. 425: 1, 3, 4

Additional exercises

1. Suppose we are given groups F1 and F2 with subsets Xi ⊂ Fi such that Fi is a free group
on Xi for i = 1, 2. Using the Universal Mapping Property, prove that F1 ∗F2 is free on the disjoint
union X1 q X2.
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2. Give examples of groups H1, H2 and K such that H1 is not isomorphic to H2 but H1 ∗K
is isomorphic to H2 ∗K. [Hint: Let K be a free group on infinitely many generators, let H1 be
finite, and let H2 = H1 ∗K.]

Munkres, Section 70

Munkres, p. 433: 1, 3

Additional exercises

1. Suppose we are given a finitely presented group G with generators x and y and relations
x3 y−2, x2 y x−2 y−1 and y3 x y−3 x−1 (hence x3 = y2, and this element lies in the center because it
commutes with a set of generators).
(i) If [G,G] is the commutator subgroup of G, show that the abelianization G/[G,G] is infinite
cyclic.
(ii) Let N be the normal subgroup which is normally generated by x y−1. Prove that N = G.
[Hint: Compare the images of x and y in G/N and recall that x3 = y2.]

2. Suppose that the topological space X is the union of the arcwise connected open subspaces
U and V such that U ∩ V is (nonempty and) arcwise connected, where all these spaces have the
same base point. Assume further that the associated map of fundamental groups from π1(U ∩ V )
to π1(U) is onto and the associated map of fundamental groups from π1(U ∩ V ) to π1(V ) is an
isomorphism. Prove that the associated map from π1(U) to π1(X) is also an isomorphism.

Munkres, Section 71

Munkres, p. 438: 4, 5
Hatcher, pp. 52–55: 20

Additional exercises

1. Let X ⊂ T 2 be the union of the three circles S1 × {1}, {1} × S1 and {−1} × S1. If
q : X → S1 ∨ S1 is the map which sends (z, 1) to (z2, 1) and (ε, w) to (1, w) where ε = ± 1,
verify that q is a two sheeted covering space projection and the associated map of fundamental
groups defines a 1–1 homomorphism from a free group on three generators to a free group on two
generators.

2. Let F2 denote the free group on the generators x and y. Prove that there is a chain of
subgroups

· · · ⊂ Hn ⊂ Hn−1 ⊂ · · · ⊂ H3 ⊂ F2

such that for each k ≥ 3 the subgroup Hk is free on k generators.

REMARK. This contrasts sharply with the situation for free abelian groups, were every
subgroup of a free abelian group on n generators is free abelian on m generators for some
nonnegative integer m ≤ n. At the end of this course we shall prove that F2 even contains
a subgroup which is free on a countably infinite set of generators.
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Munkres, Section 72

Munkres, p. 441: 1

Additional exercises

1. Suppose that X is the space obtained from S1 by attaching a 2-cell using the map z2 from
S1 to itself. Prove that X is homeomorphic to RP2. [Hint. Consider the map from D2 to the
projective plane which first maps D2 to the graph of the function

√
1 − |v|2, which lies in S2, and

then follow this by the quotient map from S2 to the projective plane. Next, consider the quotient
of D2 such that two points are equivalent if and only if their images under this map are equal, and
show that it is homeomorphic to X.]

2. The following exercise will prove the existence of an arcwise connected space X whose
fundamental group is the additive group Q of rational numbers.

(i) Define a sequence of spaces Kn recursively as follows: Let Mn denote the mapping cylinder
of the function zn from S1 to itself, let Xn correspond to the “top” part of the mapping cylinder
(the domain of the map) and let Yn correspond to the “bottom” (the codomain). Take the quotient
telescope space T∞ of this sequence to be the quotient of qm Mn with Yn identified to Xn+1 for
all n ≥ 1. Let TN be the union of the images of the first N mapping cylinders. Show that each Tn

is homotopy equivalent to the circle, and show that the algebraic map determined by

Z ∼= π1(X0) −→ π1(TN ) ∼= Z

is multiplication by N ! (= factorial).
(ii) Explain why the sets of the form Tn−Yn are open for all n > 0, use this to show that every

compact set of T∞ is contained in some Tm, and conclude the argument by using earlier exercises to
show that the fundamental group of T∞ is isomorphic to the additive group of rational numbers Q.
The homomorphism from the fundamental group of Tm to Q should take the generator of π1(Tm)
to 1/m! for each m.

Munkres, Section 79

Munkres, pp. 483–484: 1, 2(a), 5(b)

Additional exercises

1. Let p : E → B be a covering space projection, where E and B are Hausdorff (as usual),
connected and locally arcwise connected. Suppose that there is a cross-section to p; in other words,
there is a continuous (base point preserving) map σ : B → E such that p oσ is the identity. Prove
that p is a homeomorphism. [Hint: Why must the map of fundamental groups p∗ be surjective?]

2. Let P ⊂ R2 be the Polish circle. Prove that for each positive integer n there is a nontrivial
connected covering space of P with n sheets, and prove similarly that there is a nontrivial connected
covering space of P with infinitely many sheets. These examples show that the classification
principle for (connected) covering spaces breaks down if the base space B is not locally arcwise
connected, even if B itself is simply connected (which is the case if B is the Polish circle). [Hint:

Imitate the constructions of the covering spaces of the circle.]
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3. Suppose that E → X is a covering projection with countably many sheets, where X is
connected, locally arcwise connected, semilocally simply connected, and separable metric. Prove
that E is metrizable. [Hint: Apply Theorem 34.1 in Munkres.] — In particular, if U is an
open subset of Rn and E is a connected covering space of U , then one can combine this with the
countability result for π1(U) and the (still to be shown) existence of a simply connected covering
space to prove that every (Hausdorff) covering space of U is metrizable.

4. Let p : E → X be a covering map (with the usual assumptions that all spaces be locally
arcwise connected, but not necessarily connected), and let f : A → X be a subspace inclusion,
where A and X are both connected and A is locally arcwise connected. Denote the pullback covering
by E|A.

(i) Show that A is evenly covered if the induced map of fundamental groups f∗ is the trivial
homomorphism.

(ii) Show that if the induced map of fundamental groups f∗ is onto, then E|A is connected if
E is connected.

(iii) Suppose that E is simply connected. Show that if the induced map of fundamental groups
f∗ is 1–1, then the components of E|A are all simply connected.

Munkres, Section 80

Munkres, p. 487: 1(a)

Munkres, Section 81

Munkres, p. 492–494: 1(a), 5

Additional exercises

1. Determine the number of equivalence classes of based 2-sheeted covering spaces of S 1 ∨ S1,
and determine the number of equivalence classes of regular based 4-sheeted coverings of the same
space. [Hints: Every subgroup of index 2 is a normal subgroup, and normal subgroups of index n
are the kernels of surjective homomorphisms onto groups of order n. Up to isomorphism there are
only two groups of order 4.]

2. Let X be a Hausdorff space that is arcwise connected and semilocally simply connected, and
let f : X → X be a homeomorphism which sends a base point x0 into itself. The mapping torus of
f is defined to be the quotient space Mf obtained from X × [0, 1] modulo the equivalence relation
generated by (x, 0) ∼ ( f(x), 1). We have already considered a nontrivial special case; namely, the
Klein bottle (note that if f is the identity then the mapping torus is just M × S 1).

(i) Let X̃ denote the universal covering space of X, and let y0 be a base point which projects

to x0. Prove that there is a unique base point preserving homeomorphism f̃ from X̃ to itself such
that q o f̃ = f oq, where q : X̃ → X is the universal covering projection.

(ii) For each positive integer n show that Mfn is an n-sheeted covering space of Mf , and also
prove that X ×R is a covering space of Mf .

(iii) Let
ϕ : Z → Autπ1(X,x0)
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be the homomorphism ϕ(n) = (f∗)
n [= (fn)∗ ]; Prove that π1(Mf , [x, 0]) is the semidirect product

of π1(X,x) and Z by ϕ. [Hint: Let X̃ denote the univeral covering of X, and show that the

universal covering space of Mf is homeomorphic to X̃ ×R wuch that the group of covering space
automorphisms is generated by the group of all maps Tg×idR and the covering space transformation

Sf (y, t) =
(
f̃(y), t + 1

)

where f̃ is defined as in (i). Explain why the subgroup of all transformations of the form Tg × id
and the cyclic group generated by Sf intersect only in the identity element, and show that the

composite Sf
o(Tg × 1) o (Sf )−1 sends the base point y0 ∈ X̃ to f oTg(y0).]

Munkres, Section 82

Munkres, p. 441: 1

Munkres, Section 84

Munkres, p. 513: 2

Additional exercises

1. Let (X, E) be an edge-vertex graph as defined in the commentaries, and let (X, E ′) be
the derived linear graph. Express the number of vertices v(E ′) and edges e(E ′) in terms of the
corresponding numbers for E , and using this show that the Euler characteristic of X is equal to
v(E) − e(E).

2.? Let (T, E) be a locally tame tree in R2. Using the arguments in the commentaries for
Sections 61 and 63, show that S2 − T is homeomorphic to R2.

3. If (X, E) is a locally tame graph in R2, show that S2−X has only finitely many components.

4. Let M(a, b; c, d) be the graph described at the end of the commentary for Section 84. Prove
that the fundamental group of M(a, b; c, d) is a free group on (b − a) · (d − c) generators. [Hint:

Count the numbers of vertices and edges.]

Munkres, Section 85

Munkres, p. 515: 2
Hatcher, pp. 86–87: 8

Additional exercise

1. Let E ⊂ R3 be the set of all points (t, x, y) such that either x = y = 0 or else t is an integer
and x2 + y2 = 1, and let q : E → S1 ∨ S1 be the map sending (t, x, y) to (exp(2πit), x + iy).

(i) Prove that q is an infinite sheeted covering space projection onto the wedge of two circles.
(ii) Prove that the fundamental group of E is a free group on infinitely many generators. [Hint:

Let Fn denote the portion of E for which |t| ≤ n. Find the fundamental group of Fn, explain why
the homomorphism induced by inclusion sends the fundamental group of Fn injectively to the
fundamental group of Fn+1, and imitate the argument in the commentary for this section of the
text.]
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