Mathematics 205B, Winter 2008, Final Examination

INSTRUCTIONS: Work all questions, and unless indicated otherwise give reasons for your answers.

#	SCORE
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

1. [20 points] Let $K \subset \mathbf{R}^n$ be a nonempty convex set, and let $k_0 \in K$. Prove that $\{k_0\}$ is a strong deformation retract of K.

2. [20 points] Prove that S^1 is not a retract of S^n if n > 1.

3. [25 points] Let $p: E \to B$ be a covering space projection such that E is compact Hausdorff. Prove that p has finitely many sheets.

4. [25 points] Let $\Gamma \subset S^2$ be a simple closed curve, and let x, y, z be three distinct points of S^2 which do not lie on Γ . Prove that one can find a pair of points $u, v \in \{x, y, z\}$ that can be joined by a continuous curve which does not meet Γ . [*Hint:* If three points lie in $A \cup B$ and $A \cap B = \emptyset$, why do at least two lie in one of A or B?]

[25 points] Let G be a finite group of order n. Prove that G is isomorphic to 5. a homomorphic image of the free group F_{n-1} on n-1 generators. [Hint: The nontrival elements of the group can be listed as g_1, \dots, g_{n-1} .] Optional extra credit: [15 points] If G has odd order 2k + 1, show that G is a

homomorphic image of a free group on k generators.

6. [30 points] Let X be a Hausdorff, connected, locally simply connected space which is a union of two connected open subsets U and V such that $U \cap V$ is also connected. Suppose further that the standard maps from $\pi_1(U \cap V)$ to both $\pi_1(U)$ and $\pi_1(V)$ are surjective. Prove that the standard map from $\pi_1(U \cap V)$ to $\pi_1(X)$ is also surjective. 7. [25 points] Let $f: (X, x_0) \to (Y, y_0)$ be a base point preserving continuous map of connected, Hausdorff, locally simply connected spaces, and let $p: (\widetilde{X}, x_1) \to (X, x_0)$ and $q: (\widetilde{Y}, y_1) \to (Y, y_0)$ be universal (simply connected) covering space projections. Prove that there is a unique base point preserving continuous mapping $g: (\widetilde{X}, x_1) \to (\widetilde{Y}, y_1)$ such that $p \circ g = q \circ f$. 8. [30 points] Let X be the pentagram graph as depicted on the accompanying sheet, and take the decomposition into 15 edges as suggested by the figure.

(i) If T is a maximal tree in X, how many edges are in T?

(ii) Describe the fundamental group of X in abstract group-theoretic terms, and give reasons for your answer.