NAME:

Mathematics 205B, Winter 2008, Final Examination

INSTRUCTIONS: Work all questions, and unless indicated otherwise give reasons for your answers.

$\#$	SCORE
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	
2	

1. [20 points] Let $K \subset \mathbf{R}^{n}$ be a nonempty convex set, and let $k_{0} \in K$. Prove that $\left\{k_{0}\right\}$ is a strong deformation retract of K.
2. [20 points] Prove that S^{1} is not a retract of S^{n} if $n>1$.
3. [25 points] Let $p: E \rightarrow B$ be a covering space projection such that E is compact Hausdorff. Prove that p has finitely many sheets.
4. [25 points] Let $\Gamma \subset S^{2}$ be a simple closed curve, and let x, y, z be three distinct points of S^{2} which do not lie on Γ. Prove that one can find a pair of points $u, v \in\{x, y, z\}$ that can be joined by a continuous curve which does not meet Γ. [Hint: If three points lie in $A \cup B$ and $A \cap B=\emptyset$, why do at least two lie in one of A or B ?]
5. [25 points] Let G be a finite group of order n. Prove that G is isomorphic to a homomorphic image of the free group F_{n-1} on $n-1$ generators. [Hint: The nontrival elements of the group can be listed as $\left.g_{1}, \cdots, g_{n-1} \cdot\right]$

Optional extra credit: [15 points] If G has odd order $2 k+1$, show that G is a homomorphic image of a free group on k generators.
6. [30 points] Let X be a Hausdorff, connected, locally simply connected space which is a union of two connected open subsets U and V such that $U \cap V$ is also connected. Suppose further that the standard maps from $\pi_{1}(U \cap V)$ to both $\pi_{1}(U)$ and $\pi_{1}(V)$ are surjective. Prove that the standard map from $\pi_{1}(U \cap V)$ to $\pi_{1}(X)$ is also surjective.
7. [25 points] Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a base point preserving continuous map of connected, Hausdorff, locally simply connected spaces, and let $p:\left(\widetilde{X}, x_{1}\right) \rightarrow\left(X, x_{0}\right)$ and $q:\left(\widetilde{Y}, y_{1}\right) \rightarrow\left(Y, y_{0}\right)$ be universal (simply connected) covering space projections. Prove that there is a unique base point preserving continuous mapping $g:\left(\widetilde{X}, x_{1}\right) \rightarrow\left(\widetilde{Y}, y_{1}\right)$ such that $p^{\circ} g=q^{\circ} f$.
8. [30 points] Let X be the pentagram graph as depicted on the accompanying sheet, and take the decomposition into 15 edges as suggested by the figure.
(i) If T is a maximal tree in X, how many edges are in T ?
(ii) Describe the fundamental group of X in abstract group-theoretic terms, and give reasons for your answer.

