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An “M” in front of a number indicates an exercise from Munkres, and an “A”
in front of a number indicates an exercise from math205Bexercises.pdf.

Munkres, Section 52

M6. Further hints. (i) The binary operation on the set of closed curves is defined
by pointwise multiplication. Therefore, checking the identities (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h) and
1 ⊗ f = f = f ⊗ 1 reduce to checking that the functions obtained by evaluating both sides at

an arbitrary element of G are the same. Similarly, if we define f−1 by f−1(x) =
(

f(x)
)−1

, then
checking that f ⊗ f−1 = 1 = f−1 ⊗ f reduces to evaluating all the relevant expressions at an
arbitrary point x.

(ii) We need to show that if f0 ' f1 and g0 ' g1, then f0 ⊗ g0 ' f1 ⊗ g1, where ' denotes
endpoint preserving homotopy. Let H and K be the homotopies for the maps fi and gi respectively.
Consider the homotopy L = H · K defined by the algebraic product of H and K viewed as maps
into the topological group G.

(iii) Let ' be as above, and let C denote the constant closed curve sending all points to 1.
Given a, b ∈ π1(G, 1), choose representatives α and β respectively. Verify each of the relationships
in the chain α + β ' (α + C) ⊗ (C + β) ' α ⊗ β.

(iv) In the notation of the previous paragraph, verify each of the relationships in the chain
α⊗ β ' (α + C)⊗ (C + β) ' (C + β)⊗ (α + C) ' β ⊗α. Recall that 1 · g = g = g · 1 for all g ∈ G.

A1. Correction. In the second sentence, “[P, Y ]” should be replaced by “[P,X].”

A4. Further hints. (i) For each point x ∈ U there is a δ(x) > 0 such that the open
disk Nδ(x)(x;Rn) is contained in U ; it follows that the closures of the disks Vx Nδ(x)/2(x;Rn) are
compact and contained in U . The disks Vx form an open covering of U , and since U is second
countable it has the Lindelöf property: Every open covering has a countable subcovering. Let
{Vm } denote a countable subcovering extracted from the Vx’s, and let Fm be the closure of Vm

(hence Fm is a closed disk contained in U). Let

Cm =

m
⋃

j=1

Fm

and verify this family of compact subsets has all the required properties.
(ii) Choose f : X → Y representing u. Why is the image of f contained in some subset Cm?
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(iii) Suppose that f and g are homotopic maps from X into Cm and H is the homotopy
between jm

of and jm
og. Why is the image of H contained in some subset Cn, and why can we

choose n to be greater than or equal to m? Recall that if X is compact then so is X × [0, 1].

Munkres, Section 53

M2. Further hints. How are the slices of the covering map p over the open set U related
to the connected components of p−1[U ]?

M4. Further hints. Let z ∈ Z, write p−1[{z}] = {z1, · · · , zm}, and let U be an open
neighborhood of z in Z which is evenly covered with respect to p. Then p−1[U ] is a union of pairwise
disjoint open subsets Ui (1 ≤ i ≤ m) such that zi ∈ Ui. Why are there open subsets Vi ⊂ Ui such
that zi ∈ Vi and Vi is evenly covered with respect to q? Let

W =

m
⋂

i=1

p[Vi]

and explain why W is an open neighborhood of z that is evenly covered with respect to the
composite.

M6. Further hints. (i) There are several separate conclusions depending upon the
assumption on the topology of the codomain B, and it is best to handle each one individually.
Another fact along these lines worth noting is that if B is T1, then so is E (try proving this — the
argument is easier than any of the following).

Suppose that B is HAUSDORFF. It is convenient to split things into two cases, depending upon
whether or not the distinct points x, y ∈ E map to the same point in B. If they do, try to construct
disjoint neighborhoods using slices of an evenly covered neighborhood of p(x) = p(y). On the other
hand, if p(x) 6= p(y), let U and V be disjoint open neighborhoods of these image points in B and
consider p−1[U ] and p−1[V ].

Suppose that B is REGULAR. Let x ∈ E, and let U be an open neighborhood of x in E. Let W
be an open neighborhood of p(x) in B that is evenly covered, let W0 be the unique slice in p−1[W ]
containing x, and let W1 = U ∩W0, so that p maps W1 homeomorphically to an open neighborhood
of p(x) which is contained in W . Since B is regular, there is an open neighborhood V0 of p(x) in
B such that

p(x) ∈ V0 ⊂ V0 ⊂ p[W1] .

Let V = W1 ∩ p−1[V0]. By construction we have x ∈ V , so it is only necessary to show that the
closure of V in E is contained in W1. — If we let A = W1 ∩ p−1

[

V0

]

, then it will suffice to prove
that A is closed in E or equivalently that E −A is open in E. Let W ′ be the union of all the slices
for p over p[W1], except for W1 itself. Check that E − A is the union of W ′ and E −

[

V0

]

, and
explain how this is relevant.

Suppose that B is COMPLETELY REGULAR. Let x ∈ E, and let U be an open neighborhood of
x in E. Let W be an open neighborhood of p(x) in B that is evenly covered, let W0 be the unique
slice in p−1[W ] containing x, and let W1 = U ∩ W0, so that p maps W1 homeomorphically to an
open neighborhood of p(x) which is contained in W . Since B is completely regular, by the preceding
discussion we know that E is also regular, so choose an open neighborhood V of x such that the
closure of V is contained in W1. Since B is completely regular and p maps W1 homeomorphically to
a subspace of B, we know that W1 is also completely regular (recall that a subspace of a completely
regular space is also completely regular). Let f0 be a continuous function from W1 to [0, 1] which
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is 1 at x and zero on W1 − V , and extend it to E by setting f = 0 off E − V . Why does this yield
a well-defined continuous mapping on E with the required properties? Recall that W1 ⊂ U so that
E − U ⊂ E − W1.

Suppose that B is LOCALLY COMPACT HAUSDORFF. Let x ∈ E, and let U be an open
neighborhood of x in E. Let W be an open neighborhood of p(x) in B that is evenly covered,
let W0 be the unique slice in p−1[W ] containing x, and let W1 = U ∩ W0, so that p maps W1

homeomorphically to an open neighborhood of p(x) which is contained in W . Since B is locally
compact and Hausdorff, there is an open neighborhood V0 of p(x) such that the closure of V0 is
compact and contained in p[W1]. Explain why p−1[V0]∩W1 has a compact closure and is contained
in W1, and also explain how one can finish the proof knowing this.

(ii) This problem is much easier if we are allowed to assume that B is Hausdorff, so we shall
do this case first and then do the general case.

THE HAUSDORFF CASE. Let b ∈ B and let Ub be an evenly covered open neighborhood of
b. Then there is an open neighborhood Vb ⊂ Ub such that the closure of Vb in B is compact and
contained in Ub. Take a finite subcovering of B by sets Ui and let Vi be the corresponding smaller
open subsets with compact closures. Show that each p−1[Vi ] is a finite union of compact subsets
homeomorphic to Vi . Why does this imply that E is a finite union of compact sets, and why is a
finite union of compact sets also compact?

THE GENERAL CASE. Let U be a finite open covering of E, let b ∈ B, and let Wb be an
evenly covered open neighborhood of b in B. For each e ∈ E let Ne be an open neighborhood of
e such that Ne is contained in a slice over Wp(e) and Ne is also contained in some open subset Uα

belonging to U . Let W ′

b be the open neighborhood of b given by

⋂

p(e)=b

p[Ne]

and let Ve denote the intersection of Ne and p−1[W ′

p(e)]. Then the sets W ′

b form an open covering
of B and hence there is a finite subcovering by some sets Wb(k) for 1 ≤ k ≤ m. Let V be the family
of all open sets Ve where e runs through all points such that p(e) = b(k) for some k. Why is this
set finite? Explain why

p−1
[

Wb(k)

]

=
⋃

p(e)=b(k)

Ve

and use this to show that V is a finite open covering of E. For each Ve in V choose the Uα in U
such that Ve ⊂ Ne ⊂ Uα, and explain why this collection defines a finite subcovering of E.

A1. Correction. There should be an additional hypothesis that E2 is connected.
There are simple counterexamples if this condition is not met. Specifically, let E q E denote
the (topological) disjoint union of two copies of E, let q : E → B be a covering space projection,
let p2 : E q E → B be the map whose restriction to each copy of E is given by q, and let
p : E → E q E be the map which sends E to the first disjoint copy of E on the right hand side.
Then p1 = p and p2 are both covering space projections, but p is not because it is not surjective.

Hints. First of all, we need the following basic fact:

LEMMA. Let X be a connected space, and let B be a base for the topology on X. Then for each

u, v ∈ X there is a finite sequence of open sets U0, · · · , Um in B such that u ∈ U0, v ∈ Um and

Ui ∩ Ui−1 6= ∅ for all i > 0.

Sketch of proof. Given an arbitrary X and B, define a binary relation R by uR v if and
only if the condition in the Lemma holds, show that it is an equivalence relation, explain why the
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equivalence classes are open, using this explain why they must also be closed, and finally conclude
that there is only one equivalence class if X is connected.

Returning to the original problem, let x ∈ E2, let U1 be an evenly covered open neighborhood
of p2(x) in X with respect to p2, let U2 be an evenly covered open neighborhood of p2(x) with
respect to p1, and let U = U1 ∩ U2, so that U is evenly covered with respect to both maps.
Therefore we know that p−1

1 [U ] and p−1
2 [U ] are both isomorphic to disjoint unions of copies of U .

More precisely, we know that p−1
1 [U ] is homeomorphic to U × A for some discrete space A, while

p−1
2 [U ] is homeomorphic to U ×B for some discrete space B, and under these homeomorphisms the

map p sends a slice U × {a} to a slice U × {h(a)} by the standard mapsending (u, a) to
(

u, h(a)
)

,
where h : A → B is some mapping of indexing sets. If x lies in the slice corresponding to U × {b},
then x will be evenly covered, with slices given by all U ×{a} such that h(a) = b. It follows that p
will be a covering map provided it is surjective. The point of the connectedness condition is that
it should imply the surjectivity of p.

To show this, proceed as follows: Suppose that we have z ∈ E2 and z lies in an open set U such
that p2[U ] is evenly covered with respect to both pi. Use the discussion of the preceding paragraph
to show that if z lies in the image of p1 then so does every point in U . Let B be the base of open
sets in E2 satisfying the condition in the second sentence of this paragraph, let R be as in the
lemma, and show that if two points lie in the same equivalence class with respect to R and one of
them lies in the image of p, then so does the other. Why does this imply that p is onto? Recall
that E2 is connected.

A2. Hints. (i) Given y ∈ Y , let V ⊂ X be an evenly covered open neighborhood of f(y),
and let U be an open neighborhood of y such that f [U ] ⊂ V .

(ii) Let h be the continuous mapping sending (y, e) to e; explain why the image of h lies in the
inverse image of Y , verify the functional identities in the exercise, and show that an inverse to h is
given by k : p−1[Y ] → Y ×X E is given by k(z) = ( p(z), e ). One needs to check that the formula
determines an element in the subspace Y ×X E ⊂ Y × E.

A3. Hints. By the assumptions, the topology for X has a base of open subsets that are
also closed; explain why it has a base of evenly covered open subsets that are also closed. Consider
the slices in E which lie above such open subsets of X. We claim they form a base for the topology
on E; explain why it suffices to show that each slice is closed in E. To show that such a slice V is
closed, write its complement E −V as a union of the sets E − p−1[ p[V ] ] and all the other slices V ′

such that p[V ′] = p[V ]? Why are all these subsets open in E?

Munkres, Section 54

M8. Hints. Before proceeding, it is useful to note the following general result:

PROPOSITION. If p : E → B is a covering space projection, then p is an open mapping.

Proof. Let U ⊂ E be open, for each y ∈ U let Vy be an open neighborhood of f(y) which is
evenly covered, and let Uy be an open neighborhood of y such that Uy ⊂ U and Uy is contained in
a slice over Vy. Then by definition the map p sends Uy to an open subset of B, and hence

p[U ] =
⋃

y∈U

p[Uy]

is open in X.
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Returning to the original problem, we know that p is open, continuous and onto, so it is only
necessary to check that p is 1–1. The general results on covering spaces imply that for each b ∈ B
the inverse image p−1[{b}] is in 1–1 correspondence with the set of cosets π1(B, b)/Image p∗. Why
do this and simple connectivity imply about p−1[{b}]?

A1. Hints. Let pn : Rn → T n be the Cartesian product of n copies of p : R → S1. Then

pn is equivalent to pn−1 × p under the natural idenfications of
∏n

X with
(

∏n−1
X

)

× X when

specialized to X = R or S1. We know that p = p1 is a covering space projection, and by a result
from Section 53 we know that pn will be a covering space projection if pn−1 is.

A2. Further hints. We know that π1(T
n, e) ∼= Zn. Why are the automorphisms of this

group equal to the set of matrices described in the problem? To work the second part, take the
map described in the original hint. The associated map will then be given by an n×n matrix over
the integers. To determine the (i, j) entry of this matrix, let θj : S1 → T n denote the injection
map whose projection onto the jth coordinate is the identity and whose projection onto the other
coordinates is the constant map with value 1, and let pi denote projection onto the ith coordinate.
Find a relationship between pi

ofA
oθj and the entries of A.
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