
HINTS, CORRECTIONS AND SOLUTIONS TO

SELECTED EXERCISES FOR

MATHEMATICS 205B

Winter 2008

PART 2

The same conventions apply as in Part 1, and furthermore an “H” in front of
a number indicates an exercise from Hatcher which is listed for the appropriate
section in math205Bexercises.pdf.

Munkres, Section 55

M1. Hint. Let i : A → D2 be the retract map, let r : D2 → A be the retraction, and
consider i of or.

M2. Hint. Why does h extend to a continuous map from D2 to S1, and what can one
conclude about the maps i oh and −i oh, where i is the inclusion?

M3. Hint. Explain why f maps the closed first octant in R3 to itself, and define a related
continuous self-map on the intersection of this set with the unit sphere in R3 as in the proof of
Corollary 55.7.

H10. Hint: Consider the special case where f is the identity map. If every map to or
from X is nullhomotopic, then the identity map is nullhomotopic. Conversely, explain why every
map to or from X is nullhomotopic if the identity map is.

H13. Hint: Suppose that a1 and a2 are in A, and choose a curve γ1 in A joining them
(this exists since A is arcwise connected). Now let γ2 be an arbitrary curve in X joining a1 and
a2, so that (−γ1) + γ2 is a closed curve based at a2 If the map i∗ from π1(A) to π1(X) is onto,
then this is base point preservingly homotopic to a closed curve β in A. Explain why γ1 +β, whose
image lies in A, is end point preserivingly homotopic in X to γ2.

H17. Hints. Take the initial retract from S1 to T 2 to be the slice inclusion j(z) = (z, 1).
Why are the maps rn(z, w) = z · wn, where n runs through the integers, all retractions for j, and
how can one use the associated maps of fundamental groups to show that the maps rn are not
homotopic?

Munkres, Section 58

M2. Comment. As stated the problem does not require full proofs, and in any case
the most important thing is to describe approaches to showing that the fundamental groups are
isomorphic to a specific choice among the three alternatives.

M7. Hints. PART (a) : Why is the map of homotopy classes j∗ : [X,A] → [X,X]
injective, why is j∗ of∗ the identity on [X,X], and why does this imply that j∗ is also surjective?
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PART (b) : Same questions as in (a), but different reasons are needed.
PART (c) : Look for an example where X is contractible but A is not, so that the map j of

is automatically homotopic to the identity.

M9. Hint. Let t0 ∈ R be such that p(t0) = x0, and consider the unique lifting β of h oγ to
a curve [0, 1] → R such that β(0) = t0. Why is β(1) = t0 +n for some integer n, and why is n equal
to the degree as defined in the exercise? One can use this to dispose of all parts of the exercise
except (c). To prove the latter, use (b) to show that it suffices to consider cases in which h and k

are given by raising z to some integral power, and use (d) plus the standard laws of exponenets to
finish the argument.

H1. Hint. Explain why the torus is homeomorphic to the quotient of K = [0, 1] × [0, 1]
modulo the equivalence relation defined by setting (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y), construct a
retraction from K − {( 1

2
, 1

2
)} to the boundary of K, and explain why this passes to a continuous

retraction of quotient spaces.

H4. Hint. Let r : X → A be the map defined by f1, and show that r|A is homotopic to
idA.

H5. Hint. Let H : X × [0, 1] → X be the homotopy from the identity to the constant
map; Hatcher’s definition of a deformation retract means that the restriction of H to {x}× [0, 1] is
constant. Why is there an open neighborhood V of x such that V ⊂ U and H maps V × [0, 1] into
U? Remember that {x} is compact.

H9. Hint. Look at the composite of the contracting homotopy and the retraction.

H13. Change of notation. Let i : A → X denote inclusion, let ρ and σ denote the two
retractions from X → A, and let H and K denote the homotopies from i oρ and i oσ to the identity.

Hint. Why is the map of homotopy classes i∗ : [X,A] → [X,X] injective, and what does this
imply about ρ and σ?

A4. Background material. For many purposes in topology it is useful to formalize some
basic facts about connected components in a setting similar to that for fundamental groups of
spaces. Given a space X, let CC(X) denote the set of connected components of X. Since the
continuous image of a connected set is connected, it follows that if f : X → Y is a continuous map
then there is a well-defined map of sets f∗ : CC(X) → CC(Y ) such that if A is the connected
component of x ∈ X, then f∗(A) is the connected component of Y which contains f(x) and hence
also f [A]. It follows immediately that if f is the identity map on a space X, then f∗ is the identity
on the set of connected components, and also if g : Y → Z is another continuous map then
(g of)∗ = g∗ of∗. Furthermore, if f and g are homotopic maps from one space X to a second space
Y , then f∗ = g∗.

Similarly, one can define the set of arc components AC(X) for a space X and an associated map
of sets f∗ : AC(X) → AC(Y ), and these maps will have all the properties described in the previous
paragraph. For each space X there is also a well-defined natural transformation θX : AC(X) such
that for every continuous mapping f : X → Y we have f∗

oθX = θY
of∗. Verification of these

statements is left to the reader as an exercise.

Given a point x in a space X and a nonnegative integer n, we shall say that L(X;x) = n if
the following holds:

If U is an open neighborhood of x, then there is an open neighborhood V ⊂ X such that
CC(V −{x}) = n and for all open neighborhoods W such that x ∈ W ⊂ V the map from
CC(W −{x}) to CC(V −{x}), induced by the inclusion of W −{x} in V −{x}, is onto.
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EXAMPLES.

1. If U is open in Rn and n ≥ 2, then for each x ∈ U we have L(X;x) = 1.

2. If J is an interval in the real line, then we have L(J ; t) = 2 for all t ∈ J that are not
endpoints and L(J ; t) = t if t ∈ J is an endpoint.

3. If f : X → Y is a homeomorphism and x ∈ X is such that f(x) = y, then L(X;x) = n if
and only if L(Y ; y) = n.

In particular, the second and third statements combine to give a proof that if J1 and J2 are
intervals in the real line and f : J1 → J2 is a homeomorphism, then f must send endpoints to
endpoints and non-endpoints to non-endpoints. This is a slightly stronger version of the standard
assertion that the number of endpoints on an interval is topologically invariant. Likewise, all three
statements give a more formal way of stating the standard proofs that an interval in the real line
is not homeomorphic to an open subset in Rn for n ≥ 2.

The preceding definition is particularly useful for studying a class of spaces called finite edge-
vertex graphs. These are Hausdorff spaces Γ which are finite unions of subsets Ei such that each
Ei is homeomorphic to [0, 1] and if i 6= j then Ei ∩ Ej is finite and consists of endpoints for both
subsets (say, as given by the preceding discussion — it follows that the intersection is either one
point which is an endpoint of each or else it two points and is the set of endpoints for each of the
two intervals). It follows that a if a point x ∈ Ei also lies in Ej then it is also an endpoint of Ej ,
so that it is meaningful to talk about the set V of points that are endpoints for the intervals in the
collection E = {Ei}; the elements of E are called the edges of Γ with respect to E , and the elements
of V are called the vertices for Γ with respect to E . Clearly the set of vertices is finite. The next
two properties follow directly from the definitions:

(A) If X is a finite edge-vertex graph, then X is locally arcwise connected and has finitely
many (arc) components. (This follows immediately for non-endpoints, which all have
open neighborhoods homeomorphic to open intervals. For vertices, observe that each
vertex v has an open neighborhood of the form ∪j Bj , where each Bj is a closed subset
homeomorphic to a half open interval, the vertex v corresponds to the unique endpoint of
each Bj , and the subsets Bj − {v} are pairwise disjoint.

(B) For each x ∈ Γ we have L(Γ;x) = 2 if x is not a vertex, and for each vertex v ∈ V we
have L(Γ; v) = n, where n is the number of edges Ei that contain v.

Using the statement in Example 3 above, we can often decide very easily whether or not
two edge-vertex graphs are homeomorphic. For example, consider the unit circle defined by the
equation x2 + y2 = 1, which is formed from the upper and lower semicircles E± of points where
the second coordinate is nonnegative or nonpositive. For this space we have L(Γ;x) = 2 for all
x. On the other hand, for the closed interval [0, 1] we know that L(Γ;x) = 2 for all x such that
0 < x < 1, while L(Γ;x) = 1 for x = 0, 1. One efficient way of proceeding is as follows: We know
that for all but at most finitely many x ∈ Γ we have L(Γ;x) = 2. Thus for all positive integers
n 6= 2 we know that the number N(Γ, n) of vertices v with L(Γ; v) = n is a positive integer. For
homeomorphic (edge-vertex) graphs, these sequences must be the same, so one way of showing that
two graphs Γ1 and Γ2 are not homeomorphic is to show that the sequences N(Γ1, n) and N(Γ2, n)
have different values for some choice of n. In particular, if we agree that N(Γ, 2) is always ∞,
then for a graph homeomorphic to a Figure 8 we have N(n) = 0,∞, 0, 1, 0, · · · while for a graph
homeomorpic to a Figure Theta we have N(n) = 0,∞, 2, 0, · · ·, which shows that the two spaces
cannot be homeomorphic.

Hint for the problem: Compute the numbers N(n) for each of the spaces described in the
problem, and see how many different sequences are realized.
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Munkres, Section 59

M1. Hint. Thicken the two spheres into open subsets U and V such that the first sphere
is a deformation retract of U , the second is a deformation retract of V , and the intersection is
arcwise connected.

M2. Hint. Recall that there is a continuous curve in the plane whose image is D2.

M3. Hint. If f : X → Y is a homeomorphism such that f(x) = y, then X − {x} and
Y − {y} are homeomorphic.

Munkres, Section 60

M5. Hint. If the fundamental group of the Figure 8 space is abelian, why is the funda-
mental group of every connected covering space also abelian, and why are all these fundamental
groups isomorphic to subgroups of Z×Z? Let E be the union of the four circles Ai and Bi, explain
why B1 ∪ A0 and A1 ∪ B0 are (pointed) retracts of E, and show that the retractions can be used
to define a surjection from π1(E) to the group Z4. Why would this yield a contradiction if the
fundamental group of the Figure 8 space was abelian?

H18(a). Preliminary remark. We have not yet discussed attaching cells in the course,
but this part of the problem can be worked using only the material in Section 59 of Munkres.

Hints. Thicken the copies of S1 and S2 into open subsets U and V such that S1 is a
deformation retract of U , S2 is a deformation retract of V , and U ∩ V is arcwise connected. Use
this to prove that the fundamental group of S1 ∨ S2 is cyclic. Show that S1 is a retract of the one
point union, and using this explain why the fundamental group must be infinite.

H2. Hints. Give a proof by induction on n ≥ 2, modifying the hypothesis to include an
assumption that every pair of open subsets has a nonempty intersection. Why is the result true
when n = 2?

H8. Comment. It was premature to assign this problem, so disregard it for the time
being.
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