HINTS, CORRECTIONS AND SOLUTIONS TO
 SELECTED EXERCISES FOR MATHEMATICS 205B

Winter 2008

PART 4

Munkres, Section 68

M2(b). Hint. A reduced word of odd length ≥ 3 has the form $x_{1} y_{1} x_{2} \cdots y_{n} x_{n+1}$ where $x_{i} \in G_{1}$ and $y_{j} \in G_{2}$ or vice versa.

Munkres, Section 69

M1. Hints. If we define an abelianization of G to be a homomorphism $\alpha: G \rightarrow A$ such that (a) A is abelian, (b) for every $\beta: G \rightarrow B$, where B is abelian, there is a unique homomorphism $h: A \rightarrow B$ such that $h^{\circ} \alpha=\beta$, prove that the following hold:
(1) The quotient projection $G \rightarrow[G, G]$ is an abelianization.
(2) If α and α^{\prime} are abelianizations, then there is a unique isomorphism $\varphi: A \rightarrow A^{\prime}$ such that $\varphi^{\circ} \alpha=\alpha^{\prime}$.

Complete the proof by showing that the direct sum group is an abelianization of $G_{1} \times G_{2}$.
M3. Hints. Explain why we may, without loss of generality, assume that $m \geq n$.

Munkres, Section 70

M1. Hint: (a) In general, if we are given group homomorphisms $f_{1}: K \rightarrow G_{1}$ and $f_{2}: K \rightarrow G_{2}$, the pushout group P is the quotient of $G_{1} * G_{2}$ modulo the normal subgroup N generated by all elements of the form $f_{1}(a) f_{2}(a)^{-1}$ for $a \in K$. Let $q_{i}: G_{i} \rightarrow P$ be the composites of inclusions into the free product followed by projections onto the pushout. The triviality of the composite $q_{2}{ }^{\circ} f_{2}=q_{1}{ }^{\circ} f_{1}$ implies that each q_{i} factors through a map r_{i} from G / N_{i} to P, and by the Universal Mapping Property of free products these define a unique homomorphism from $G / N_{1} * G_{2} / N_{2}$ to P. This map is onto because the images of G_{1} and G_{2} generate P.
(b) Let M be the normal subgroup of $G_{1} * G_{2}$ generated by $N_{1} * N_{2}$. Then M contains the normal subgroup N and hence there is a canonical homomorphism from P to the quotient by the subgroup M. Show that

$$
G_{1} * G_{2} / M \cong G / N_{1} * G_{2} / N_{2}
$$

and that the composite homomorphism

$$
G / N_{1} * G_{2} / N_{2} \longrightarrow P \longrightarrow G_{1} * G_{2} / M \cong G / N_{1} * G_{2} / N_{2}
$$

is the identity.

A1.(i) Hint: The abelianization may be written additively as the quotient group of the free abelian group $\mathbf{Z} \oplus \mathbf{Z}$ by the image of the homomorphism from \mathbf{Z} which sends a generator to $(3,2)$. Show that this quotient is infinite cyclic.

Munkres, Section 71

M4. Hint: Suppose the space is first countable, and let $\left\{U_{n}\right\}$ be a countable base at the intersection point of the circles. Why is the intersection of U_{n} with the $n^{\text {th }}$ circle an open subset of that circle? If $\left\{x_{n}\right\}$ is an arbitrary sequence of points in X such that x_{n} lies in the $n^{\text {th }}$ circle for all n, why is the complement of the infinite set $\left\{x_{1}, x_{2}, \cdots\right\}$ an open subset of X (in other words, why is the given set closed)? Consider what happens if one chooses x_{n} to be a point in the intersection of U_{n} with the $n^{\text {th }}$ circle that is not the common point.

M5. Hints: (a) Show that one of X, Y is metrizable but the other is not. Also show that neither of these spaces is compact but the infinite earring in Example 71.1 is compact.
(b) Let Y_{n} be the union of the first n circles. Why is the fundamental group of Y_{n} free on n generators, and why do the images of these free generators in $\pi_{1}\left(Y_{n+1}\right)$ extend to a set of free generators for the latter group? Explain why every compact subset of Y is contained in an open subset which is homotopy equivalent to some Y_{n} (look at the sets on which the first coordinate is less than $2 n+\frac{1}{2}$).

H20. Comment: One can construct a continuous 1-1 onto map from X to Y which sends the first circle in X to the first circle in Y, and so on; verification of continuity depends upon the definition of the topology in the infinite wedge. Although this map cannot be a homeomorphism (see the preceding hint), it is a homotopy equivalence. - Proving that the map is a homotopy equivalence using the methods of this course seems to be extremely challenging at best, so this part of the problem should be disregarded.

Munkres, Section 72

M1. Hints. Recall that S^{n-1} is simply connected if $n>2$.

Munkres, Section 59

H8. Hints. Let U_{1} be the open set given by points in the image of the first torus plus points which lie in the image of $S^{1} \times V$ in the second, where V is a small arc centered at x_{0}, and let U_{2} be formed similarly with the roles of the two tori interchanged. Explain why the first torus is a strong deformation retract of U_{1} and the second is a strong deformation retract of U_{2}. Why is the common circle a strong deformation retract of the intersection? Apply the Seifert-van Kampen Theorem.

