NAME:

Mathematics 205B, Winter 2008, Examination 1

Work all questions, and unless indicated otherwise give reasons for your answers. The point values for individual problems are indicated in brackets.

#	SCORE
1	
2	
3	
4	
TOTAL	

1. [20 points] Explain the meanings of the Path Lifting Property and Covering Homotopy Property for the map $p(t) = \exp(2\pi i t)$ from **R** to S^1 , and explain how these can be used to construct a well-defined map from $\pi_1(S^1, 1)$ to **Z**. 2. [25 points] Suppose we are given a continuous mapping $f: X \to Y$ and two continuous mappings $g: Y \to X$ and $h: Y \to X$ such that $g \circ f$ is homotopic to the identity on X and $f \circ h$ is homotopic to the identity on Y. Prove that g is homotopic to h. [Hint: Look at the homotopy class of $g \circ f \circ h$ in two different ways. Recall that if u is homotopic to u' as maps from A to B and v is homotopic to v' as maps from B to C, then $v \circ u$ is homotopic to $v' \circ u'$.]

3. [30 points] (a) Suppose that A is a retract of X and $x_0 \in A$. Let $j : A \to X$ be the inclusion mapping. Prove that the associated map of fundamental groups j_* is injective.

(b) Suppose that $x_0 \in U$, where U is open and dense in X, and give examples where the homomorphism $j_* : \pi_1(U, x_0) \to \pi_1(X, x_0)$ is (i) injective but not surjective, (ii) surjective but not injective.

4. [25 points] Suppose that $p: E \to B$ is a covering space projection. For each of the following statements, either give a proof or a counterexample.

- (a) If B is connected, then so is E.
- (b) If B is $\mathbf{T_1}$ (one point subsets are closed), then so is E. [Hint: What conclusions if any can be drawn about $p^{-1}[\{b\}]$ for $b \in B$?]