Remarks on spheres

We begin with a basic decomposition result concerning spheres. Let Int D^{m} denote the open disk of unit 1 in \mathbf{R}^{m}.

THEOREM. Suppose that $p, q>0$. Then the sphere S^{p+q+1} is a union of two open subsets U and V such that U is homeomorphic to $S^{p} \times \operatorname{Int} D^{q+1}, V$ is homeomorphic to $\operatorname{Int} D^{p+1} \times S^{q}$, and their intersection is homeomorphic to $S^{p} \times S^{q} \times(0,1)$.

Proof. View S^{p+q+1} as the unit sphere in $\mathbf{R}^{p+q+2} \cong \mathbf{R}^{p+1} \times \mathbf{R}^{q+1}$, and let S_{p} and S_{q} denote the unit spheres in $\mathbf{R}^{p+1} \times\{\mathbf{0}\}$ and $\{\mathbf{0}\} \times \mathbf{R}^{q+1}$ respectively. Let $U=S^{p+q+1}-S_{q}$ and $V=S^{p+q+1}-S_{p}$. Then there are homeomorphisms

$$
h: S^{p} \times \operatorname{Int} D^{q+1} \longrightarrow U, \quad k: \operatorname{Int} D^{p+1} \times S^{q} \longrightarrow V
$$

defined by the following formulas:

$$
h(x, y)=\left(\sqrt{1-y^{2}} \cdot x, y\right) \quad k(x, y)=\left(x, \sqrt{1-x^{2}} \cdot y\right)
$$

In each case it is a straightforward exercise to write down a formula for the inverse which shows that the inverse is continuous. Also, one has a similar homeomorphism $\varphi: S^{p} \times(0,1) \times S^{q} \rightarrow$ $S^{p+q+1}-\left(S_{1} \cup S_{2}\right)=U \cap V$ which sends (x, t, y) to $(t x, s y)$ where $s=\sqrt{1-t^{2}}$. .

SPECIALIZATION TO S^{3}. In this case $p=q=1$, and it is instructive to look at the fundamental groups of the various spaces constructed above, for they give an example of a space $X=U \cup V$ such that $(i) U$ and V are open arcwise connected subspaces with an arcwise connected intersection, (ii) the fundamental groups of U and V are nontrivial, (iii) the fundamental group of $X=U \cup V$ is trivial. This is true because the fundamental groups of U and V are infinite cyclic, while the fundamental group of $X=U \cup V$ is trivial.

Here is a more detailed explanation of the situation when $p=q=1$: The diagram of fundamental groups

$$
\pi_{1}(U) \longleftarrow \pi_{1}(U \cap V) \longrightarrow \pi_{1}(V)
$$

corresponds to the algebraic diagram

$$
\mathbf{Z} \longleftarrow \mathbf{Z} \times \mathbf{Z} \longrightarrow \mathbf{Z}
$$

where the left and right arrows represent projections onto the first and second factors. Since the generators of $\pi_{1}(U)$ and $\pi_{1}(V)$ lift to a pair of free generators for $\pi_{1}(U \cap V)$, and the respective generators map to the trivial elements in $\pi_{1}(V)$ and $\pi_{1}(U)$ respectively, it follows that these generators must map to zero in $\pi_{1}(X)$, and this in turn yields another proof that $\pi_{1}\left(S^{3}\right)$ is trivial.

