Mathematics 205C, Spring 2011, Final Examination

Solutions

1. [25 points] Let (X, \mathcal{E}) be a connected graph, let $n \geq 2$ be an integer, and let $\left(X^{\prime}, \mathcal{E}^{\prime}\right)$ be a connected n-sheeted covering with the canonical graph structure. Suppose that $\pi_{1}(X)$ is a free group on $g \geq 1$ generators. Then $\pi_{1}\left(X^{\prime}\right)$ is a free group on $h \geq 1$ generators for some positive integer h. Derive a formula for h in terms of g and n. [Hint: Look at the Euler characteristics of X and X^{\prime}.]

SOLUTION

The Euler characteristics of X and X^{\prime} are given by $\chi(X)=1-g$ and $\chi\left(X^{\prime}\right)=1-h$. Since X^{\prime} is an n-sheeted covering of X we have $\chi\left(X^{\prime}\right)=n \chi(X)$. Therefore

$$
h=1-\chi\left(X^{\prime}\right)=1-n \chi(X)=1-n(1-g)=n g-n+1
$$

2. [25 points] Let A_{*} and B_{*} be chain complexes, and suppose that $f: A_{*} \rightarrow$ B_{*} is a map of chain complexes. Prove that for each integer q there is a well-defined homomorphism of homology groups $f_{*}: H_{q}(A) \rightarrow H_{q}(B)$ such that if $u \in H_{q}(A)$ is represented by $x \in A_{q}$, then $f_{*}(u)$ is represented by $f(x) \in B_{q}$.

SOLUTION

First of all we need to prove that if $d x=0$ then $d f(x)=0$; but $d x=0$ and the fact that f is a chain map imply

$$
0=f(d x)=d f(x)
$$

so this is true. Next, suppose that x and y represent u, so that $x-y=d z$ for some z. Then

$$
f(y)=f(x-d z)=f(x)-f(d z)=f(x)-d f(z)
$$

so that $f(x)$ and $f(y)$ represent the same element in $H_{q}(B)$. To see the map is a homomorphism, note that if x_{i} represents u_{i} for $i=1,2$, then $f_{*}\left(u_{1}+u_{2}\right)$ is represented by

$$
f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)
$$

and by the basic condition in the problem the right hand side represents $f_{*}\left(u_{1}\right)+f_{*}\left(u_{2}\right)$.
3. [25 points] If $k \geq 1$ then the half-space \mathbb{R}_{+}^{k} is defined to be the set of all points in \mathbb{R}^{k} whose first coordinates are nonnegative. Prove that if $m \neq n$ are positive integers then \mathbb{R}_{+}^{m} and \mathbb{R}_{+}^{n} are not homeomorphic. [Hint: \mathbb{R}_{+}^{k} has an open dense subset which is open in \mathbb{R}^{k}; namely, the set of all points whose first coordinates are positive. If X is homeomorphic to both of these spaces, why does X have open dense sets homeomorphic to \mathbb{R}^{m} and \mathbb{R}^{n} ? Recall that the intersection of two such open dense subsets is always dense and hence nonempty.]

SOLUTION

Suppose there is a homeomorphism $f: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}_{+}^{n}$. Let $V \subset \mathbb{R}_{+}^{n}$ be the open subset (even in \mathbb{R}^{n}) of all points whose first coordinates are positive, let $U_{0} \subset \mathbb{R}_{+}^{m}$ be the open subset (even in \mathbb{R}^{m}) of all points whose first coordinates are positive, and let $U=f\left[U_{0}\right]$. Since f is a homeomorphism we have $U=\mathbb{R}_{+}^{n}-\left[\mathbb{R}^{n-1} \times\{0\}\right]$, and since f is a homeomorphism the deleted set is closed in \mathbb{R}_{+}^{n}, so that U is also open in \mathbb{R}_{+}^{n}. Clearly U and V are both dense subsets (every point in \mathbb{R}_{+}^{k} is a limit of points whose last coordinates are positive), and since the intersection of two open dense subsets is open and dense we conclude that $U \cap V$ is also dense in \mathbb{R}_{+}^{n}. Now $U \cap V$ is open in both U and V, where one of the latter is homeomorphic to an open subset of \mathbb{R}^{m} and the other is homeomorphic to an open subset of \mathbb{R}^{n}. By Invariance of Dimension, this implies that $m=n$.
4. [25 points] (a) Let Δ_{3} be the standard 3-dimensional simplex with vertices $\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. Write down the explicit formula for the boundary of the generator $\mathbf{e}_{0} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}$ in the simplicial chain complex $C_{*}\left(\Delta_{3}\right)$ as a linear combination of the generators for $C_{2}\left(\Delta_{3}\right)$.
(b) Suppose that (P, \mathbf{K}) is a connected simplicial complex, and let $A, B \in \mathbf{K}$. Prove that there is a sequence of simplices $A=S_{0}, \cdots, S_{p}=B$ such that each intersection is nonempty. [Hint: Define a binary relation on simplices such that A and B are related if a chain of the given type exists. Why is this an equivalence relation, and why is the union of all simplices in a given equivalence class a closed and open subset of P ?]

SOLUTION

(a) The boundary is given by

$$
\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}-\mathbf{e}_{0} \mathbf{e}_{2} \mathbf{e}_{3}+\mathbf{e}_{0} \mathbf{e}_{1} \mathbf{e}_{3}-\mathbf{e}_{0} \mathbf{e}_{1} \mathbf{e}_{2} .
$$

(b) The binary relation on simplices is just the equivalence relation generated by the binary relation $A \sim B$ if and only if $A \cap B$ is nonempty. Given a simplex A, let P_{A} be the set of all points in simplices which belong to the equivalence class of A, so that P_{A} is the union of all simplices in this class. Clearly P is the union of the sets P_{A}, while $A \sim B$ implies $P_{A}=P_{B}$ and if $P_{A} \cap P_{B} \neq \emptyset$, then a point x in this intersection must lie on some simplex C which is in the same equivalence class as A and likewise for B; in other words the subsets P_{A} and P_{B} are either disjoint or identical. Each of these is a finite union of simplices and hence closed, so we have a decomposition of P into finitely many pairwise disjoint closed subsets. Since P is connected there can be only one subset in this decomposition, so $P=P_{C}$ for every simplex C, and hence for any two simplices we have $A \sim B$.
5. [25 points] (a) Suppose that X is a connected and locally simply connected space such that $\pi_{1}(X)$ is finite of odd order. Prove that X has no connected 2 -sheeted covering spaces.
(b) Suppose that $X=U \cup V$ where U, V and $U \cap V$ are all open and arcwise connected. Prove that $\pi_{1}(X)$ is finitely generated if both $\pi_{1}(U)$ and $\pi_{1}(V)$ are.

SOLUTION

(a) The equivalence classes of connected coverings are in 1-1 correspondence with subgroups of $\pi_{1}(X)$, and if a covering space corresponds to the subgroup H then the number of sheets is equal to the index of H in $\pi_{1}(X)$. If the latter has odd order, then by Lagrange's Theorem on cosets the index of H must also be odd. In particular, it cannot be equal to 2 .
(b) By the Seifert-van Kampen Theorem we know that $\pi_{1}(X)$ is generated by the images of $\pi_{1}(U)$ and $\pi_{1}(V)$. If the latter have finite generating sets A and B then the union of their images in $\pi_{1}(X)$ will be a finite generating set for $\pi_{1}(X)$.
6. [25 points] Let (P, \mathbf{K}) be an n-dimensional simplicial complex. Prove that $H_{n}(P, \mathbf{K})$ is a finitely generated free abelian group. [Hint: Why is $H_{n}(P, \mathbf{K})$ isomorphic to the kernel of d_{n} ?]

SOLUTION

By definition the homology group is isomorphic to the kernel of D_{n} modulo the image of d_{n+1}. Since the complex is n-dimensional, the domain of the latter is zero and hence this map is zero, and therefore $H_{n}(P, \mathbf{K})$ is isomorphic to the kernel of d_{n}. Since this kernel is a subgroup of the finitely generated abelian group $C_{n}(P, \mathbf{K})$, it follows that the kernel must be a finitely generated free abelian group. In particular, it has no nonzero elements of finite order.
7. [25 points] Given a space X and $x \in X$, the local homology groups of X at x are defined by $H_{*}(X, X-\{x\})$. Prove that if U is an open neighborhood of x then these groups only depend on U (and its subspace topology). [Note: Recall the default assumption that X is Hausdorff.]

SOLUTION

We know that $X=X-\{x\} \cup U$ and $U-\{x\}=X-\{x\} \cap U$, so by excision the morphism from $H_{*}(U, U-\{x\})$ to $H_{*}(X, X-\{x\})$ induced by inclusion will be an isomorphism.
8. [25 points] Suppose that $X=U \cup V$ where U and V open in X. Assume further that the maps $H_{q}(U \cap V)$ to $H_{q}(U)$ induced by the inclusion $U \cap V \subset U$ are isomorphisms (in all dimensions) and the maps $H_{q}(U \cap V)$ to $H_{q}(V)$ induced by the inclusion $U \cap V \subset V$ are zero (in all dimensions). Prove that the maps $H_{q}(V)$ to $H_{q}(X)$ induced by the inclusion $V \subset X$ are also isomorphisms (in all dimensions).

Extra credit. [20 points] Prove the same conclusion holds without the restriction on the maps $H_{q}(U \cap V)$ to $H_{q}(V)$. [Hint: If $f: A \rightarrow B$ is a homomorphism of abelian groups and $F: A \rightarrow A \oplus B$ is the graph map $F(a)=(a, f(a))$, show that the quotient of $A \oplus B$ modulo the image of F is isomorphic to B by considering the map $\varphi: A \oplus B \rightarrow B$ with $\varphi(a, b)=b-f(a)$.]

SOLUTION

Consider the Mayer-Vietoris sequence for (U, V). By assumption the maps from $H_{*}(U \cap V)$ to $H_{*}(U) \oplus H_{*}(V)$ are 1-1 because this is true for their projections onto $H_{*}(U)$ are in fact isomorphisms. This means that the boundary maps

$$
\Delta: H_{q+1}(U \cup V) \rightarrow H_{q}(U \cap V)
$$

are all zero and the maps from $\left.H_{(} U\right) \oplus H_{*}(V)$ to $H_{*}(U \cup V)$ are onto. By exactness we know that the kernel of this onto map is the image of the previous map, which is just $H_{*}(U) \oplus 0$. But this means that the map from $H_{*}(V)$ to $H_{*}(U \cup V)$ must be an isomorphism.

EXTRA CREDIT. In this case we still know that the map from $H_{*}(U \cap V)$ to direct sum $H_{*}(U) \oplus H_{*}(V)$ is $1-1$ and hence Δ is also zero in this case, so that the Mayer-Vietoris sequence becomes a collection of short exact sequences:

$$
0 \rightarrow H_{q}(U \cap V) \rightarrow H_{q}(U) \oplus H_{q}(V) \rightarrow H_{q}(U \cup V) \rightarrow 0
$$

If we identify $H_{q}(U \cap V)$ with $H_{q}(U)=A$ (by definition) using the isomorphism assumption and let $H_{q}(V)=B$, then the short exact sequence imply that $H_{q}(U \cup V)$ is the quotient of $A \oplus B$ modulo the image C of a homomorphism $A \rightarrow A \oplus B$ sending a to ($a, g(a)$) for some homomorphism $g: A \rightarrow B$. Therefore it suffices to show that the quotient of $A \oplus B$ by such a subgroup is isomorphic to B. The simplest way to do this is to define a homomorphism from $A \oplus B$ to B which is onto and whose kernel is C, and this can be done by defining $h: A \oplus B \rightarrow B$ so that $h(a, b)=b-g(a)$.

An extra page for use if needed

