EXERCISES FOR MATHEMATICS 205C

SPRING 2011

File Number 00

These are mainly review from the previous two courses in the sequence.

- 1. (i) Let U be an open subset in \mathbb{R}^n for some n. Prove that U has countably many arc components. [Hint: Why is every point in the same arc component as a point with rational coordinates.
- (ii) Given two homotopy equivalent spaces X and Y, prove that there is a 1–1 correspondence between their sets of arc components.
- (iii) Let X be the Cantor Set constructed as $\cap_n X_n$, where $X_0 = [0,1]$, X_n is a union of 2^n pairwise disjoint closed intervals of length 3^{-n} , and X_{n+1} is obtained from X_n by removing the open middle third from each interval. Prove that X cannot have the homotopy type of an open subset in \mathbb{R}^n for any n. [Hint: Given two points $u \neq v \in X$, find U and V be disjoint open subsets containing u and v such that $U \cup V = X$. Why does this imply that every arc component of X consists of a single point?]
- **2.** Let Y be a nonempty topological space with the indiscrete topology $(i.e., \emptyset)$ and Y are the only open sets), and let X be an arbitrary nonempty topological space. Prove that [X,Y] consists of a single point. [Hint: For all topological spaces W, every map of sets from W to Y is continuous. Using this, show that if $A \subset B$ is a subspace and $g: A \to Y$ is continuous, then g extends to a continuous map from B to Y.]
- **3.** Let U be an open subset in \mathbb{R}^n for some n, and let $u_0 \in U$ be a point with rational coefficients.
- (i) Let K be a compact metric space, and let $f: K \to \mathbb{R}^n$ be continuous. Prove that there is some $\varepsilon > 0$ such that if the distance from $x \in \mathbb{R}^n$ to f[K] is less than ε , then $x \in U$.

Definition. Let U be an open subset of \mathbb{R}^n . A **broken line curve** is a continuous curve $\gamma:[a,b]\to U$ such that the following holds: There is a partition of [a,b] given by

$$a = x_0 < x_1 < \cdots < x_k = b$$

such that the restriction of γ to each closed subinterval $[x_{i-1}, x_i]$ is a straight line segment which has a parametrization of the form

$$\beta(t) = \left(\frac{x_{i-1} - t}{\Delta_i}\right) \cdot \gamma(x_{i-1}) + \left(\frac{t - x_i}{\Delta_i}\right) \cdot \gamma(x_i)$$

where $\Delta_i = x_i - x_{i-1}$. The points $\gamma(a)$ and $\gamma(b)$ are called the initial and final points, and the remaining points of the form $\gamma(x_i)$ are called corner points.

- (ii) Let $\gamma:[0,1]\to U$ be a closed curve such that $\gamma(0)=\gamma(1)=u_0$. Prove that the class of γ is also represented by a broken line curve as above such that the initial and final points are $\gamma(0)=\gamma(1)$ and the corner points $\beta_i\in U$ have rational coefficients. [Hint: Let $\varepsilon>0$ be as in the first point of the exercise, use uniform continuity to find some $\delta>0$ such that $|t-s|<\delta$ implies $|\gamma(t)-\gamma(s)|<\frac{1}{4}\varepsilon$, and partition [0,1] into subintervals of length less than δ . Suppose the partition is given by $0=x_0< x_1< \cdots < x_k=1$, and for i=1,...,k-1 choose β_i such that $|\beta_i-\gamma(x_i)|<\frac{1}{4}\varepsilon$, and show that the corresponding broken line is base point preservingly homotopic in U to the original curve γ . More precisely, show that the line segment joining β_i to β_{i+1} lies in the open ε -disk centered at $\gamma(x_i)$; we know that the latter is contained in U.]
- (iii) Using the preceding, explain why $\pi_1(U, u_0)$ is countable. [Hint: Count the number of finite sequences of points in U with rational coordinates.]
- 4. Prove the **compact support property** of the fundamental group: If $\alpha \in \pi_1(X, x)$, then there is a compact subset K of X such that $x \in K$ and α lies in the image of the map $\pi_1(K,x) \to \pi_1(X,x)$. Furthermore, if α' and β' in $\pi_1(K,x)$ map to the same element of $\pi_1(X,x)$, then there is some compact set $L \subset X$ such that L contains K and α' and β' map to the same element of $\pi_1(L,x)$. [Hint: If we choose representative curves or homotopies, their images are compact.]
- **5.** Let $p: E \to X$ be a covering map, and let $f: Y \to X$ be continuous. Define the *pullback*

$$Y \times_X E := \{(e, y) \in Y \times E | f(y) = p(e)\}.$$

Let $p_{(Y,f)} = \operatorname{proj}_Y | Y \times_X E$.

- (i) Prove that $p_{(Y,f)}$ is a covering map. Also prove that f lifts to E if and only if there is a map $s: Y \to Y \times_X E$ such that $p_{(Y,f)}s = 1_Y$.
- (ii) Suppose also that f is the inclusion of a subspace. Prove that there is a homeomorphism $h: Y \times_X E \to p^{-1}(Y)$ such that $p \circ h = p_{(Y,f)}$.
- NOTATION. If the condition in (ii) holds we sometimes denote the covering space over Y by E|Y (in words, E restricted to Y).
- **6.** (i) Suppose that $A \subset X$ is a retract and X is Hausdorff. Prove that A is a closed subset of X. [Hint: Let $i: A \subset X$ be the inclusion and let $r: X \to A$ be the retraction. What can we say about the set of all points $y \in X$ such that $i \circ r(y) = y$?]
- (ii) Suppose we have $A \subset B \subset X$ such that A is a retract of B and B is a retract of X. Prove that A is a retract of X.
- (iii) Suppose that A is a retract of X; let $j: A \to X$ be the inclusion mapping, and let $x_0 \in A$. If H is the image of the fundamental group of A under the mapping h_* , prove that there is a normal subgroup K of $\pi_1(X, x_0)$ such that the latter is generated by H and K, and we have $H \cap K = \{1\}$. [Hint: Let $r: X \to A$ be the associated retraction, and consider the kernel of r_* .]