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DEFAULT HYPOTHESES. Unless specifically stated otherwise, all spaces are assumed to be
Hausdorff and locally arcwise connected.

1. Suppose we are given groups F1 and F2 with subsets Xi ⊂ Fi such that Fi is a free group
on Xi for i = 1, 2. Using the Universal Mapping Property, prove that F1 ∗F2 is free on the disjoint
union X1 q X2.

2. If G is a group, then the commutator subgroup or derived subgroup G′ (also written [G,G])
is the normal subgroup normally generated by all commutators; in other words, all products of the
form xyx−1y−1 where x, y ∈ G. Let p : G → G/G′ be the quotient projection.

(a) Prove that G/G′ is abelian, and if f : G → A is a homomorphism into an abelian group
A, then there is a unique homomorphism f : G/G′ → A such that f = f op (this is a Universal
Mapping Property for homomorphisms into abelian groups).

(b) Prove that if ϕ : G → K is a homomorphism into abelian groups which also has the
Universal Mapping Property in (a), then K is isomorphic to G/G′.

(c) Suppose that the group G can be written as a free product G1 ∗ G2. Prove that G/G′ is
isomorphic to (G1/G

′

1
) × (G2/G

′

2
).

3. Suppose that X is (arcwise) connected and locally simply connected, and assume further that
X the union of two (arcwise) connected open subspaces U1 and U2 such that U1 ∩ U2 is (arcwise)
connected and the map π1(U1∩U2, p) → π1(X, p) induced by inclusion is the trivial homomorphism,
where p ∈ U1 ∩ U2. Prove that there is an isomorphism

(π1(U1, p)/N1 ) ∗ (π2(U2, p)/N2 ) −→ π1(X, p)

where Ni ⊂ π1(Ui, p) is the normal subgroup generated by the image of π1(U1 ∩U2, p) → π1(Ui, p).
[Hint: Use the Universal Mapping Property.]

4. (a) Suppose that X is a union of two closed subspaces A and B such that A ∪ B consists
of a single point p. Also assume that p has contractible open neighborhoods U and V in A and B
respectively. Prove that π1(X, p) is the free product of π1(A, p) and π1(B, p).

(b) Given two positive integers m,n > 1, construct a space X whose fundamental group is
Zm ∗ Zn.

5. Let p : E → X be a covering map (with the usual assumptions that all spaces be locally
arcwise connected, but not necessarily connected), and let f : A → X be a subspace inclusion,
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where A and X are both connected and A is locally arcwise connected. Denote the pullback covering
by E|A.

(i) Show that A is evenly covered if the induced map of fundamental groups f∗ is the trivial
homomorphism.

(ii) Show that if the induced map of fundamental groups f∗ is onto, then E|A is connected if
E is connected.

(iii) Suppose that E is simply connected. Show that if the induced map of fundamental groups
f∗ is 1–1, then the components of E|A are all simply connected.

6. Determine the number of equivalence classes of based 2-sheeted covering spaces of the Figure
Eight space S1 ∨ S1, and determine the number of equivalence classes of regular based 4-sheeted
coverings of the same space. [Hints: Every subgroup of index 2 is a normal subgroup, and normal
subgroups of index n are the kernels of surjective homomorphisms onto groups of order n. Up to
isomorphism there are only two groups of order 4.]

7. (a) Suppose that X is the Utilities Graph with six vertices A,B,C,G,W,E and nine edges,
joining each of A,B,C to each of G,W,E. Compute the fundamental group of X and find a
maximal tree in X.

(b) Suppose that Xn is the complete graph on n ≥ 4 vertices v1, · · · , vn, with edges joining
each pair of points vi 6= vj . Compute the fundamental group of Xn and find a maximal tree in Xn.

8. Let F2 denote the free group on the generators x and y. Prove that there is a chain of
subgroups

· · · ⊂ Hn ⊂ Hn−1 ⊂ · · · ⊂ H3 ⊂ F2

such that for each k ≥ 3 the subgroup Hk is free on k generators.

9. Suppose that Y is a connected graph whose fundamental group is free on n generators,
and suppose that p : X → Y is a connected n-sheeted covering space projection. Find the unique
positive integer m such that the fundamental group of X is free on m generators.

10. Let Xn be the graph in R
2 whose vertices are the lattice points (p, q) where p and q are

integers such that 0 ≤ p, q ≤ n, and whose edges are the segments which join (p, q) to (p, q + 1) if
q < n or join (p, q) to (p+1, q) if p < n (physically, this is a square grid with n rows and n columns
whose lower right corner is the origin). Compute the fundamental group of Xn and determine the
number of vertices in a maximal tree Tn. Describe an explicit maximal tree when n = 3 or 4.
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