Comments on Problem 3

Several solutions used the following result:
Theorem. Let $A \subset S^{2}$ be a simple closed curve, and let W be a component of $S^{2}-A$. Then W is homeomorphic to an open 2-disk.

This is in fact true, but a proof was not given in the course. One way of proving this result is to note that the methods of the course show that $H_{1}(W)=0$ and to show that a connected region in the plane with this property is diffeomorphic (in fact, complex analytically equivalent) to an open disk by the Riemann Mapping Theorem as is done in Ahlfors, Complex Analysis. One can go even further and prove that $\bar{W}=W \cup A$ is homeomorphic to D^{2} such that A corresponds to S^{1}, but this result (called the Schönflies Theorem) is much deeper.

Using the theorem, one can proceed (as in several solutions) to say that B lies in one component of $S^{2}-A$, so say that the latter is given as a union $U \cup V$ of its components and assume (without loss of generality) that $B \subset U$. This implies that $U-B$ is a union of components $W_{1} \cup W_{2}$. If we use the identification of the one point compactification U^{\bullet} with S^{2}, then we know that the point at infinity lies in the closure of one of these components, say W^{2}; let W^{*} be this closure, which is an open subset of U^{\bullet}. Then by the preceding we know that W_{1} and W^{*} are homeomorphic to open disks, and hence W_{2}, which is the complement of a point in the topological open disk W^{*}, must be homeomorphic to $S^{1} \times(0,1)$. [Note: In many papers this step was omitted.] This argument proves the assertion about three components in the complement of $A \cup B$ and also the fact that H_{1} of one component is infinite cyclic while H_{1} of the remaining components must vanish (which is the extra credit statement).

Since the version of the Riemann Mapping Theorem mentioned above may have been covered in a complex analysis course like 210B, full credit was given for solutions as above (provided nothing was left out!).

