EXERCISES FOR MATHEMATICS 205C
 SPRING 2011

File Number 04

DEFAULT HYPOTHESES. Unless specifically stated otherwise, all spaces are assumed to be Hausdorff and locally arcwise connected.
0. (a) Suppose that the 2-dimensional simplicial complex (P, \mathbf{K}) has vertices A, B, C, D, E and simplices given by

$$
A B C, \quad A B D, \quad A C D, \quad B C D, \quad B C E, \quad B D E, \quad C D E
$$

and all their faces. Let \mathbf{K}_{1} and \mathbf{K}_{2} be the subcomplexes consisting of all simplices lie in the sets $\{A, B, C, D\}$ and $\{B, C, D, E\}$ respectively. Compute the homology of (P, \mathbf{K}) using a MayerVietoris sequence. [Hint: Each \mathbf{K}_{i} is isomorphic to the boundary of a 3-simplex, and their intersection is the simplex $B C D$.]
(b) Suppose that the 2-dimensional simplicial complex (P, \mathbf{K}) has vertices A, B, C, D, X and simplices given by

$$
A B C, \quad A B D, \quad A C D, \quad B C D, \quad A X, \quad B X, \quad C X, \quad D X
$$

and all their faces. Let \mathbf{K}_{1} be the subcomplex generated by the first four of these simplices and let \mathbf{K}_{2} be be the subcomplex generated by the last four. Compute the homology of (P, \mathbf{K}) using a Mayer-Vietoris sequence. [Hint: Every simplex in the second subcomplex is contained in a simplex whose vertices include X, and the intersection of the two subcomplexes is finite.]
(c) Compute the homology of (P, \mathbf{K}) if \mathbf{K} is the 2-skeleton of the simplex Δ_{4}; recall that the m skeleton of a simplicial complex is generated by all simplices of dimension $\leq m$. [Hint: Computing the relative homology of $\left(\Delta_{4}, \mathbf{K}\right)$ is fairly easy to do; note that it is nonzero in only two dimensions.]

1. Prove that the homotopy invariance axiom for homology theories is equivalent to the following weaker statement, which is supposed to hold for all pairs (X, A) :

If $t=0,1$ and $i_{t}:(X, A) \rightarrow(X \times[0,1], A \times[0,1])$ is the slice inclusion $i_{t}(x)=(x, t)$, then the maps in homology $i_{0 *}$ and $i_{1 *}$ are equal.
[Hint: If H is a homotopy from f_{0} to f_{1} then $f_{t}=H{ }^{\circ} i_{t}$ for $t=0,1$.]
2. Given a topological space X, the cone on X, written $\mathbf{C}(X)$, is defined to be the quotient space of $X \times[0,1]$ whose equivalence classes are the one point subsets (x, t) for $t>0$ and the subset $X \times\{0\}$, which is called the vertex of the cone.
(a) If $f: X \rightarrow Y$ is a continuous mapping, explain why the mapping $f \times \operatorname{id}_{[0,1]}$ from $X \times[0,1]$ to $Y \times[0,1]$ passes to a continuous map $\mathbf{C}(f): \mathbf{C}(X) \rightarrow \mathbf{C}(Y)$ and this construction has the functorial properties $\mathbf{C}(g \circ f)=\mathbf{C}(g){ }^{\circ} \mathbf{C}(f)$ and $\mathbf{C}(\mathrm{id})=\mathrm{id}$.
(b) Prove that $\mathbf{C}(X)$ is contractible [Hint: Show that the identity map is homotopic to the map which sends everything to the vertex.] Using this, show that $H_{q}(\mathbf{C}(X), X \times\{1\})$ is isomorphic to $H_{q-1}(X)$ if $q \geq 2$, and $H_{1}(\mathbf{C}(X), X \times\{1\})=0$ if X is arcwise connected.
3. Given a topological space X, the suspension on X, written $\Sigma(X)$, is defined to be the quotient space of $X \times[-1,1]$ whose equivalence classes are the one point subsets (x, t) for $t \neq \pm 1$ and the subsets $X \times\{-1\}$ and $X \times\{1\}$, which are called the poles of the cone (sometimes the latter are called the south and north poles respectively and written P_{-}and P_{+}).
(a) If $f: X \rightarrow Y$ is a continuous mapping, explain why the mapping $f \times \operatorname{id}_{[-1,1]}$ from $X \times[-1,1]$ to $Y \times[-1,1]$ passes to a continuous map $\Sigma(f): \Sigma(X) \rightarrow \Sigma(Y)$ and this construction has the functorial properties $\Sigma(g \circ f)=\Sigma(g) \circ \Sigma(f)$ and $\Sigma(\mathrm{id})=\mathrm{id}$.
(b) Prove that $\Sigma(X)-\left\{P_{-}\right\}$and $\Sigma(X)-\left\{P_{+}\right\}$are contractible, and in fact they are deformation retracts of $\left\{P_{+}\right\}$and $\left\{P_{-}\right\}$respectively. Also explain why $\Sigma(X)-\left\{P_{+}, P_{-}\right\}$is homotopy equivalent to X. [Hint: Why is it homeomorphic to $X \times(-1,1)$?]
(c) Prove that if X is arcwise connected then $H_{1}(\Sigma(X))=0$, while if $q \geq 2$ then there is an isomorphism from $H_{q}(\Sigma(X))$ to $H_{q-1}(X)$ which is essentially given by the boundary map in a suitable Mayer-Vietoris exact sequence. [Hint: Use the decomposition

$$
\Sigma(X)=\Sigma(X)-\left\{P_{-}\right\} \cup \Sigma(X)-\left\{P_{+}\right\}
$$

and the conclusions of part (b) above. What is the intersection of the two given open subsets?]
3. \quad Suppose that M_{1} and M_{2} are connected topological n-manifolds with $p_{i} \in M_{1}$, and let $M_{1} \vee M_{2}$ denote the quotient of the disjoint union $M_{1} \amalg M_{2}$ in which p_{1} and p_{2} are identified. Informally, this space is a one point union of M_{1} and M_{2} which contains (homeomorphic copies of) the latter as closed subspaces, and the intersection of these subspaces is a single point.
(a) Explain why $M_{i} \subset M_{1} \vee M_{2}$ has an open neighborhood U_{i} such that M_{i} is a deformation retract of U_{i}. [Hint: Consider the subset $M_{1} \vee W_{2}$ where W_{2} is a neighborhood of p_{2} which is homeomorphic to an open n-disk, and do the same with the roles of 1 and 2 reversed.]
(b) Prove that if $q>0$ then $H_{q}\left(M_{1} \vee M_{2}\right)$ is isomorphic to $H_{q}\left(M_{1}\right) \oplus H_{q}\left(M_{2}\right)$.
4. (a) If X is a nonempty space prove that $H_{q}\left(S^{1} \times X\right)$ is isomorphic to $H_{q}(X) \oplus H_{q-1}(X)$. [Hint: Write $S^{1}=U \cup V$ where $U-S^{1}=\{1\}$ and $V=S^{1}-\{-1\}$, consider the corresponding decomposition of $S^{1} \times X$, and look at the associated Mayer-Vietoris exact sequence.]
(b) Using the same ideas and an induction argument, prove that $H_{q}\left(S^{n} \times X\right)$ is isomorphic to $H_{q}(X) \oplus H_{q-n}(X)$. [Hint: Write $S^{n}=U \cup V$ where U and V are complements of the "north and south poles" $\pm \mathbf{e}_{n+1}$, and observe that $U \cap V \cong S^{n-1} \times \mathbb{R}$.]
5. (a) Explain why $H_{0}(X, A)$ is a free abelian group on the set of all arc components of X which do not contain any points of A.
(b) Compute the homology of $\left(S^{n}, A\right)$ where $n \geq 1$ and A is a finite set. There are two cases depending upon whether or not $n=1$.
6. (a) Prove that the sphere S^{m} is not a retract of the sphere S^{n} if $m \neq m$.
(b) Suppose that $A \subset X$ is a retract of X. Prove that $H_{q}(X) \cong H_{q}(A) \oplus H_{q}(X, A)$ for all $q \geq 0$.
7. Let $f:\left(D^{n}, S^{n-1}\right) \rightarrow\left(D^{n}, D^{n}-\{0\}\right)$ be the inclusion map of pairs. Show that f defines homotopy equivalences from D^{n} to itself and from S^{n-1} to $D^{n}-\{0\}$, but f is not a homotopy equivalence of pairs. [Hint: Note that a homotopy equivalence of Hausdorff pairs $(X, A) \rightarrow(Y, B)$ also defines a homotopy equivalence of pairs $(X, \bar{A}) \rightarrow(Y, \bar{B})$, where as usual \bar{C} denotes the closure of the subspace C.]
8. If $d>1$ is an integer, then the generalized Möbius strip M_{d} is defined to be the quotient of $S^{1} \times[0,1]$ whose equivalence classes are one point sets corresponding to the points (z, t) where $t<1$ and subsets with d elements of the form $\left\{(\alpha z, t) \mid \alpha^{d}=1\right\}$. If $d=2$ this is just the usual Möbius strip.
(a) Let $B \subset M_{d}$ denote the image of $S^{1} \times\{1\}$. Prove that B is a deformation retract of M_{d}. [Hint: Show that the deformation retraction ρ of $S^{1} \times[0,1]$ which pushes everything down vertically to $S^{1} \times\{1\}$ passes to a map $M_{d} \rightarrow B$ and that the homotopy from the identity to the composite of ρ with the inclusion $S^{1} \times\{1\} \subset S^{1} \times[0,1]$ passes to a homotopy of the composite $M_{d} \rightarrow B \subset M_{d}$.
(b) Let $q: S^{1} \cong S^{1} \times\{1\} \rightarrow B \subset M_{d}$ be induced by the quotient space projection from $S^{1} \times[0,1]$ to M_{d}. Prove that there is a homeomorphism h from B to S^{1} such that the composite $h^{\circ} q$ is the map from S^{1} to itself which sends z to z^{d}. Also, explain why q is homotopic to the composite

$$
S^{1} \approx S^{1} \times\{0\} \subset S^{1} \times[0,1] \rightarrow M_{d}
$$

where the morphism on the right is just the quotient projection. [Hint for the first part: Show first that there is a continuous map $h: B \rightarrow S^{1}$ such that $h^{\circ} q(z)=z^{d}$ by noting that if two points in S^{1} map to the same equivalence class in B then their images under the map $z \rightarrow z^{d}$ are equal. Then verify that h is $1-1$ onto and hence is a homeomorphism onto its image. - The second statement will follow easily from the fact that the slice inclusions i_{0}, i_{1} of S^{1} in $S^{1} \times[0,1]$ are homotopic.]
(c) Let $A_{k} \subset S^{1}$ be the minor arc whose endpoints are β^{k-1} and β^{k}, where $\beta=\exp (2 \pi i / 3 d)$. Explain why $A_{k} \times[0,1]$ maps homeomorphically onto its image in M_{d}, and using the standard homeomorphisms $A_{k} \times[0,1] \cong[0,1] \times[0,1]$ construct a triangulation of M_{d} whose vertices correspond to the points $\left(\beta^{k}, 0\right)$ and $\left[\beta^{k}, 1\right]$, where " $[-,-]$ " denotes the associated equivalence class in M_{d}. Note that there are $3 d$ vertices of the first type and 3 of the second. [Hint: The 2 -simplices should have vertices corresponding to triples of the forms $\left\{\left(\beta^{k}, 0\right),\left(\beta^{k+1}, 0\right),\left[\beta^{k}, 1\right]\right\}$ and $\left\{\left(\beta^{k}, 0\right),\left[\beta^{k}, 1\right],\left[\beta^{k+1}, 1\right]\right\}$. Thus there are $6 d$ simplices of dimension 2 , with $3 d+3$ vertices and $9 d+3$ edges. There is a drawing for this problem in the file exercises04a.pdf.]
(d) Let \mathbf{K} be the simplicial complex obtained in the preceding discussion, let \mathbf{L} be the subcomplex corresponding to $S^{1} \times\{0\}$, and attach a cone \mathbf{Q} on \mathbf{L} whose simplices have the form $w v v^{\prime}$ and their boundaries, where $v v^{\prime}$ is an edge of \mathbf{L}. Let \mathbf{N}_{d} denote the union of \mathbf{K} and \mathbf{Q} along \mathbf{L}, and let $P[d]$ denote the underlying space. Prove that $H_{q}(P[d])$ is isomorphic to \mathbb{Z} if $q=0$, \mathbb{Z}_{d} if $q=1$, and 0 otherwise. [Hint: Use a Mayer-Vietoris sequence for simplicial homology together with the provious observations that $q_{*}: H_{1}\left(S^{1}\right) \rightarrow H_{1}(B)$ is multiplication by d, the inclusion map defines a homotopy equivalence from B to M_{d}, and q is homotopic to the composite $S^{1} \approx S^{1} \times\{0\} \rightarrow S^{1} \times[0,1] \rightarrow M_{d}$.] that is multiplication by d on H_{1} of the appropriate spaces under the given isomorphism H
9. For $1 \leq q \leq n$ let G_{n} be a finitely generated abelian group. Prove that there is a connected polyhedron P such that $H_{q}(P)=G_{q}$ for $1 \leq q \leq n$. [Hints: Use $8(d)$ and $3(b)$ to do the case where $n=1$, and use $8(d), 3(b)$ and suspensions to get the conclusion in higher dimensions.]
10. (a) Using the Mayer-Vietoris sequence for the decomposition of $T^{2}-\{(-1,-1)\}$ into $T^{2}-\left(S^{1}-\{-1\}\right) \cup\left(S^{1}-\{-1\}\right) \times S^{1}$, prove that H_{1} of this arcwise connected space is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$ in dimension 1 and is zero in all other positive dimensions. [Hint: $\quad S^{1}$ minus a point is contractible, as is the intersection of the open sets in the decomposition.]
(b) Using Exercise 4, compute the homology of $T^{2}=S^{1} \times S^{1}$ and show that projection onto either coordinate induces a surjection from $H_{1}\left(T^{2}\right)$ to $H_{1}\left(S^{1}\right)$. [Hint: Explain why it suffices to consider projection onto the second coordinate and use some steps in the proof of Exercises 4.]
(c) Using the preceding observations, explain why the inclusion of $T^{2}-\{(-1,-1)\}$ in T^{2} induces an isomorphism in homology. [Hint: Let j_{1}, j_{2} denote inclusions of S^{1} as $S^{1} \times\{1\}$ and $\{1\} \times S^{1}$ respectively, and let π_{1}, π_{2} denote the coordinate projections. Explain why $\pi_{s *}{ }^{\circ} \pi_{t *}$ is the identity if $s=t$ and trivial if $s \neq t$.]
(d) Let W be an open neighborhood of $(-1,-1)$ in T^{2} such that W is homeomorphic to an open 2-disk with $(-1,1)$ corresponding to its center. By excision we know that $H_{*}(W, W-\{(-1,-1)\}) \cong$ $H_{*}\left(T^{2}, T^{2}-\{(-1,-1)\}\right)$. Prove that the 2-dimensional generator of this group maps to zero in $H_{1}\left(T^{2}-\{(-1,-1)\}\right)$ and hence lies in the image of $H_{2}\left(T^{2}\right)$. Using this show that the inclusion of $W-\{(-1,-1)\} \cong S^{1} \times(0,1)$ in $T^{2}-\{(-1,-1)\}$ induces the zero map in homology.
(e) The double torus or oriented surface of genus two has a decomposition of the form $U_{1} \cup U_{2}$ where U_{i} is homeomorphic to $T^{2}-\{(-1,-1)\}$ and the intersection is given by $W_{1}-\{(-1,-1)\} \subset U_{1}$ or equivalently $W_{2}-\{(-1,-1)\} \subset U_{2}$. Compute the homology groups of the double torus using this decomposition and a Mayer-Vietoris sequence.
11. Suppose that U and V are open convex subsets of \mathbb{R}^{n} and $U \cap V$ is nonempty. Prove that $H_{q}(U \cup V)=0$ if $q \neq 0$ and $H_{0}(U \cup V) \cong \mathbb{Z}$, and give an example to show that $U \cup V$ is not necessarily convex. [Hint: $U \cap V$ is convex and if C is convex then C is contractible.]
12. (\star) Suppose we are given a triple of spaces (X, A, B) such that A is a subspace of X and B is a subset of A. For each integer q, define the connecting homomorphism ∂_{*} from $H_{q+1}(X, A)$ to $H_{q}(A, B)$ to be the composite $H_{q+1}(X, A) \rightarrow H_{q}(A) \rightarrow H_{q}(A, B)$. Prove that the sequence

$$
\cdots \rightarrow H_{q+1}(X, A) \rightarrow H_{q}(A, B) \rightarrow H_{q}(X, B) \rightarrow H_{q}(X, A) \rightarrow H_{q-1}(B, A) \cdots
$$

is exact. [One reference for a proof is the book by Eilenberg and Steenrod.]

