Differential Topology

Lectures by John Milnor, Princeton University, Fall term 1958

Notes by James Munkres

Differential topology may be defined as the study of those properties of differentiable manifolds which are invariant under diffeomorphism (differentiable homeomorphism). Typical problem falling under this heading are the following:

1) Given two differentiable manifolds, under what conditions are they diffeomorphic?
2) Given a differentiable manifold, is it the boundary of some differentiable manifold-withboundary?
3) Given a differentiable manifold, is it parallelisable?

All these problems concern more than the topology of the manifold, yet they do not belong to differential geometry, which usually assumes additional structure (e.g., a connection or a metric).

The most powerful tools in this subject have been derived from the methods of algebraic topology. In particular, the theory of characteristic classes is crucial, where-by one passes from the manifold M to its tangent bundle, and thence to a cohomology class in M which depends on this bundle.

These notes are intended as an introduction to the subject; we will go as far as possible without bringing in algebraic topology. Our two main goals are
a) Whitney's theorem that a differentiable n-manifold can be embedded as a closed subset of the euclidean space $\mathbb{R}^{2 n+1}$ (see §1.32); and
b) Thom's theorem that the non-orientable cobordism group \mathcal{N}^{n} is isomorphic to a certain stable homotopy groups (see §3.15).

Chapter I is mainly concerned with approximation theorems. First the basic definitions are given and the inverse function theorem is exploited. ($\S 1.1-1.12$). Next two local approximation theorems are proved, showing that a given map can be approximated by one of maximal rank. ($\S 1.13-1.21$). Finally locally finite coverings are used to derive the corresponding global theorems: namely Whitney's embedding theorem and Thom's transversality lemma (§1.35).

Chapter II is an introduction to the theory of vector space bundles, with emphasis on the tangent bundle of a manifold.

Chapter III makes use of the preceding material in order to study the cobordism group \mathcal{N}^{n}.

Chapter I Embeddings and Immersions of Manifolds

Notation. If x is in the euclidean space \mathbb{R}^{n}, the coordinate of x are denoted by $\left(x^{1}, \ldots, x^{n}\right)$. Let $\|x\|=\max \left|x^{i}\right|$; let $C^{n}(r)$ denote the set of x such that $\|x\|<r$; and $C^{n}\left(x_{0}, r\right)$ the set of x such that $\left\|x-x_{0}\right\|<r$. The closure of a cube C is denoted by \bar{C}.

A real valued function $f\left(x^{1}, \ldots, x^{n}\right)$ is differentiable if the partials of f of all orders exist and are continuous (i.e., "differentiable" means C^{∞}). A map $f=\left(f^{\prime}, \ldots, f^{p}\right): U \rightarrow \mathbb{R}^{p}$ (where U is an open set, in \mathbb{R}^{n}) is differentiable if each of the coordinate functions $f^{\prime}, \ldots, f^{f}$ is differentiable. $D f$ denotes the Jacobian matrix of f; one verifies that $D(g f)=D g \cdot D f$. The notation $\partial\left(f^{1}, \ldots, f^{f}\right) / \partial\left(x^{1}, \ldots, x^{n}\right)$ is also used. If $n=p,|D f|$ denotes the determinant.
1.1 Definition. A topological n-manifold M^{n} is a Hausdorff space with a countable basis which is locally homeomorphic to \mathbb{R}^{n}.

A differentiable structure \mathcal{D} on a topological manifold M^{n} is a collection of real-valued functions, each defined on an open subset of M^{n} such that:

1) For every point p of M^{n} there is a neighbourhood U of p and a homeomorphism h of U onto an open subset of \mathbb{R}^{n} such that a function f, defined on the open subset W of U, is in \mathcal{D} if and only if $f h^{-1}$ is differentiable.
2) If U_{i} are open sets contained in the domain of f and $U=\cup U_{i}$, then $f \mid U \in \mathcal{D}$ if and only if $f \mid U_{i}$ is in \mathcal{D}, for each i.

A differentiable manifold M^{n} is a topological manifold provided with a differentiable structure \mathcal{D}; the elements of \mathcal{D} are called the differentiable functions on M^{n}. Any open set U and homeomorphism h which satisfy the requirement of 1) above are called a coordinate system on M^{n}.
Notation. A coordinate system is sometimes denoted by the coordinate functions:
$h(p)=\left(u^{1}(p), \ldots, u^{n}(p)\right)$.
1.2 Alternate definition. Let a collection $\left(U_{i}, h_{i}\right)$ be given, where h_{i} is a homeomorphism of the open subset U_{i} of M^{n} onto an open subset of \mathbb{R}^{n}, such that
a) the U_{i}^{\prime} 's cover M^{n};
b) $h_{j} h_{i}^{-1}$ is a differentiable map on $h_{i}\left(U_{i} \cap U_{j}\right)$, for all i, j.

Define a coordinate system as an open set U and homeomorphism h of U onto an open subset of \mathbb{R}^{n} such that $h_{i} h^{-1}$ and $h h_{i}^{-1}$ are differentiable on $h\left(U \cap U_{i}\right)$ and $h_{i}\left(U \cap U_{i}\right)$ respectively, for each i.
Define a differentiable structure on M^{n} as the collection of all such coordinate systems. A function f, defined on the open set V, is differentiable if $f h^{-1}$ is differentiable on $h(U \cap V)$, for all coordinate systems (U, h).
One shows readily that these two definitions are entirely equivalent.
1.3 Definition. Let M_{1}, M_{2} be differentiable manifolds. If U is an open subset of M_{1}, $f: U \rightarrow M_{2}$ is differentiable if for every differentiable function g on $M_{2}, g f$ is differentiable on M_{1}. If $A \subset M_{1}$, a function $f: A \rightarrow M_{2}$ is differentiable if it can be extended to a differentiable function defined on a neighbourhood U of A.
$f: M_{1} \rightarrow M_{2}$ is a diffeomorphism if f and f^{1} are defined and differentiable.
(A coordinate system (U, h) on M^{n} is then an open set U in M^{n} and a diffeomorphism h of U onto an open set in \mathbb{R}^{n}.)

If $A \subset M$, we have just defined the notion of differentiable function for subsets of A. Suppose that A is locally diffeomorphic to \mathbb{R}^{k} : this collection is easily shown to be a differentiable structure on A.
In this case, A is said to be a differentiable submanifold of M.
The following lemma is familiar from elementary calculus.
1.4. Lemma. Let $f: C^{n}(r) \rightarrow \mathbb{R}^{n}$ satisfy the condition $\left|\partial f^{\prime} / \partial x^{j}\right| \leq b$ for all i, j. Then $\|f(x)-f(y)\| \leq b n\|(x-y)\|$, for all $x, y \in \bar{C}^{n}(r)$.
1.5. Theorem (Inverse Function Theorem). Let U be an open subset of \mathbb{R}^{n}, let $f: U \rightarrow \mathbb{R}^{n}$ be differentiable, and let Df be non-singular at x_{0}. Then fis a diffeomorphism of some neighbourhood of x_{0} onto some neighbourhood of $f\left(x_{0}\right)$.
Proof: We may assume $x_{0}=f\left(x_{0}\right)=0$, and that $D f\left(x_{0}\right)$ is the identity matrix.
Let $g(x)=f(x)-x$, so that $D g(0)$ is the zero matrix. Choose $r>0$ so that $x \in U$ and $D f(x)$ is nonsingular and $\left.\mid \partial g^{i} / \partial x^{j}\right) \mid \leq 1 / 2 n$, for all x with $\|x\|<r$.
Assertion. If $y \in C^{n}(r / 2)$, there is exactly one $x \in C^{n}(r)$ such that $f(x)=y$:
By the previous lemma,

$$
\begin{equation*}
\left\|g(x)-g\left(x_{0}\right)\right\| \leq(1 / 2)\left\|x-x_{0}\right\| \text { on } C^{n}(r) . \tag{*}
\end{equation*}
$$

Let us define $\left\{x_{n}\right\}$ inductively by $x_{0}=0, x_{1}=y, x_{n+1}=y-g\left(x_{n}\right)$. This is well-defined, since $x_{n}-x_{n-1}=g\left(x_{n-2}\right)-g\left(x_{n-1}\right)$ so that

$$
\left\|x_{n}-x_{n-1}\right\| \leq(1 / 2)\left\|x_{n-2}-x_{n-1}\right\| \leq\|y\| / 2^{n-1} ;
$$

and thus $\left\|x_{n}\right\| \leq 2\|y\|$ for each n. Hence the sequence $\left\{x_{n}\right\}$ converges to a point x with $\|x\| \leq 2\|y\|$, so that $x \in C^{n}(r)$. Then $x=y-g(x)$, so that $f(x)=y$. This proves the existence of x. To show uniqueness, note that if $f(x)=f\left(x_{1}\right)=y$, then $g\left(x_{1}\right)-g(x)=x-x_{1}$, contradicting $\left(^{*}\right)$.
Hence $f^{1}: C^{n}(r / 2) \rightarrow C^{n}(r)$ exists. Note that

$$
\left\|f(x)-f\left(x_{1}\right)\right\| \geq\left\|x-x_{1}\right\|-\left\|g(x)-g\left(x_{1}\right)\right\| \geq(1 / 2)\left\|x-x_{1}\right\|
$$

so that $\left\|y-y_{1}\right\| \geq(1 / 2)\left\|f^{1}(y)-f^{1}\left(y_{1}\right)\right\|$. Hence f^{1} is continuous; the image $C^{n}(r / 2)$ of under f^{1} is open because it equals $C^{n}(r) \cap f^{1}\left(C^{n}(r / 2)\right.$), the intersection of two open sets.
To show that f^{-1} is differentiable, note that

$$
f(x)=f\left(x_{1}\right)+D f\left(x_{1}\right) \cdot\left(x-x_{1}\right)+h\left(x, x_{1}\right),
$$

where $\left(x-x_{1}\right)$ is written as a column matrix and the dot stands for matrix multiplication. Here $h\left(x, x_{1}\right) /\left\|x-x_{1}\right\| \rightarrow 0$ as $x \rightarrow x_{1}$. Let A be the inverse matrix of $D f\left(x_{1}\right)$. Then

$$
\begin{gathered}
A \cdot\left(f(x)-f\left(x_{1}\right)\right)=\left(x-x_{1}\right)+A \cdot h\left(x, x_{1}\right), \quad \text { or } \\
A \cdot\left(y-y_{1}\right)+A \cdot h_{1}\left(y, y_{1}\right)=f^{1}(y)-f^{1}\left(y_{1}\right),
\end{gathered}
$$

where $h\left(y, y_{1}\right)=-h\left(f^{1}(y), f^{1}\left(y_{1}\right)\right)$. Now

$$
h_{1}\left(y, y_{1}\right) /\left\|y-y_{1}\right\|=-\left[h\left(x, x_{1}\right) /\left\|x-x_{1}\right\|\right]\left(\left\|x-x_{1}\right\| /\left\|y-y_{1}\right\|\right) .
$$

Since $\left\|x-x_{1}\right\| /\left\|y-y_{1}\right\| \leq 2, h_{1}\left(y, y_{1}\right) /\left\|y-y_{1}\right\| \rightarrow 0$ as $y \rightarrow y_{1}$. Hence

$$
D\left(f^{-1}\right)=A=(D f)^{-1} .
$$

This means that $(D f)^{-1}$ is obtained as the composition of the following maps:

$$
C^{n}(r / 2) \underset{f^{1}}{\rightarrow} C^{n}(r) \underset{D f}{\rightarrow} \mathrm{GL}(n) \underset{\text { matrix inversion }}{\rightarrow} \mathrm{GL}(n) ;
$$

where $\mathrm{GL}(n)$ denotes the set of non-singular $n \times n$ matrices, considered as a subspace of n^{2}-dimensional euclidean space. Since f^{1} is continuous and $D f$ and matrix inversion are $C^{\infty},(D f)^{-1}$ is continuous, i.e., is f^{1} is C^{1}. In general, if f^{1} is C^{k}, then by this argument $(D f)^{-1}$ is also, i.e., f^{1} is of class C^{k+1}. This completes the proof.
1.6. Lemma. Let U be an open subset of \mathbb{R}^{n}, let $f: U \rightarrow \mathbb{R}^{p}(n \leq p), f(0)=0$, and let $\operatorname{Df}(0)$ have rank n. Then there exists a diffeomorphism g of one neighbourhood of the origin in \mathbb{R}^{p} onto another so that $g(0)=0$ and $g f\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, 0, \ldots, 0\right)$, in some neighbourhood of the origin.

Proof: Since $\partial\left(f^{1}, \ldots, f^{1}\right) / \partial\left(x^{1}, \ldots, x^{n}\right)$ has rank n, we may assume that

$$
\partial\left(f^{1}, \ldots, f^{\prime}\right) / \partial\left(x^{1}, \ldots, x^{n}\right)
$$

is the submatrix which is non-singular. Define $F: U \times \mathbb{R}^{p-n} \rightarrow \mathbb{R}^{p}$ by the equation

$$
F\left(x^{1}, \ldots, x^{p}\right)=f\left(x^{1}, \ldots, x^{n}\right)+\left(0, \ldots, 0, x^{n+1}, \ldots, x^{p}\right) .
$$

F is an extension of f, since $F\left(x^{1}, \ldots, x^{n}, 0, \ldots, 0\right)=f\left(x^{1}, \ldots, x^{n}\right)$.
$D F$ is non-singular at the origin, since its determinant everywhere equals

$$
\left|\partial\left(f^{1}, \ldots, f^{f}\right) / \partial\left(x^{1}, \ldots, x^{n}\right)\right|
$$

which is non-zero. Hence F has a local inverse g, so that g maps one neighbourhood of the origin in \mathbb{R}^{p} onto another, and

$$
g F\left(x^{1}, \ldots, x^{p}\right)=\left(x^{1}, \ldots, x^{p}\right)
$$

and hence

$$
g f\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, 0, \ldots, 0\right) .
$$

1.7. Corollary. Let A^{k} be a differentiable sub-manifold of M^{n}. Given $x \in A^{k}$, there is a coordinate system (U, h) on M^{n} about x, such that $h(U \cap A)=h(U) \cap \mathbb{R}^{k}$ (where \mathbb{R}^{k} is considered as the subspace $\mathbb{R}^{k} \times 0$ of $\mathbb{R}^{k} \times \mathbb{R}^{k}=\mathbb{R}^{n}$).

Proof: Let $\left(U_{i}, h_{i}\right)$ be a coordinate system on M^{n} about x; by hypothesis, there is a differentiable map f of a neighbourhood V of x in M^{n} into \mathbb{R}^{k} such that $f \mid V \cap A=f_{1}$ is a diffeomorphism whose range is an open set W in \mathbb{R}^{k}. We may assume $U_{1}=V$, and $h_{1}(x)=f(x)=0$.
Now $f h_{1}^{-1} h_{1} f^{-1}$ is the identity on W, so that its Jacobian, which equals $D\left(f h_{1}^{-1}\right), D\left(h_{1} f^{-1}\right)$ is nonsingular. Hence $D\left(h_{1} f^{1}\right)$ has rank k, so that by the previous lemma, there is a diffeomorphism g of some neighbourhood $V_{1} \subset h_{1}\left(U_{1}\right)$ of 0 onto another such that $g(0)=0$ and
$g h_{1} f_{1}^{-1}\left(x^{1}, \ldots, x^{k}\right)=\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)$. Then $U=h_{1}^{-1}\left(V_{1}\right)$ and $h=g h_{1}$ will satisfy the requirement of the lemma.
1.8. Lemma. Let U be an open subset of \mathbb{R}^{n}, let $f: U \rightarrow \mathbb{R}^{p}, f(0)=0,(n \geq p)$, and let Df(0) have rank p. Then there is a diffeomorphism h of some neighbourhood of the origin in \mathbb{R}^{n} onto another such that $h(0)=0$ and $f h\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{p}\right)$.
Proof: We nay assume $\partial\left(f^{1}, \ldots, f^{p}\right) / \partial\left(x^{1}, \ldots, x^{p}\right)$ is non-singular at 0 , since $D f(0)$ has rank p. Define $F: U \rightarrow \mathbb{R}^{n}$ by the equation

$$
F\left(x^{1}, \ldots, x^{n}\right)=\left(f^{\prime}(x), \ldots, f^{f}(x), x^{p+1}, \ldots, x^{p}\right) .
$$

Then $D F(0)$ is non-singular; let h be the local inverse of F. Let g project \mathbb{R}^{n} onto the subspace \mathbb{R}^{p}; $f=g F$. Then

$$
f h\left(x^{1}, \ldots, x^{n}\right)=g F h\left(x^{1}, \ldots, x^{n}\right)=g\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{p}\right) .
$$

1.9. Exercise. Let U be an open subset of $\mathbb{R}^{n}, f: U \rightarrow \mathbb{R}^{p}, f(0)=0$; and let $D f(x)$ have rank k for all x in U. Then there are local diffeomorphisms h and g of \mathbb{R}^{n} and \mathbb{R}^{p} respectively such that

$$
g f h\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, 0, \ldots, 0\right) .
$$

1.10. Definition. If $f: M_{1} \rightarrow M_{2}$, the rank of f, written $\operatorname{rank}(f)$, at x is the rank of $D\left(h_{2} f h_{1}^{-1}\right)$ at $h_{1}(x)$, where $\left(U_{1}, h_{1}\right)$ and $\left(U_{2}, h_{2}\right)$ are coordinate systems about x and $f(x)$, respectively. The differentiable map $f: M_{1}{ }^{n} \rightarrow M_{2}{ }^{p}$ is an immersion if $\operatorname{rank}(f)=n$ everywhere ($n \leq p$). It is an embedding if it is also a homeomorphism into.
If $f: M_{1}{ }^{n} \rightarrow M_{2}{ }^{p}$, then $y \in M_{2}{ }^{p}$ is a regular value of f if $\operatorname{rank}(f)=p$ on the entire set $f^{1}(y)$. Otherwise, y is a critical value. (If $y \notin f\left(M_{1}^{n}\right), y$ is, by definition, a regular value of f.)
1.11. Exercise. If A is a differentiable submanifold of M, the inclusion $A \rightarrow M$ is an embedding and conversely if $f: M_{1} \rightarrow M$ is an embedding then $f\left(M_{1}\right)$ is a differentiable submanifold .
1.12. Exercise. If y is a regular value of $f: M_{1}{ }^{n} \rightarrow M_{2}{ }^{p}$, then $f^{1}(y)$ is a differentiable submanifold of $M_{1}{ }^{n}$ of dimension $n-p$ (or empty).
1.13. Definition. A subset A of \mathbb{R}^{n} has measure zero if it may be covered by a countable collection of cubes $C^{n}(x, r)$ having arbitrarily small total volume. In such a case, $\mathbb{R}^{n} \backslash A$ is everywhere dense (i.e., it intersects every non-empty open set).
1.14. Lemma. Let U be an open subset of $\mathbb{R}^{n} ; \operatorname{let} f: U \rightarrow \mathbb{R}^{n}$ be differentiable. If $A \subset U$ has measure zero, so does $f(A)$.
Proof: Let C be any cube with $\bar{C} \subset U$. Let b denote the maximum of $\left.\mid \partial f^{\prime} / \partial x^{j}\right) \mid$ on \bar{C} for all i, j. By 1.4, $\|f(x)-f(y)\| \leq b n\|x-y\|$ for $x, y \in \bar{C}$.

Now $A \cap C$ has measure zero; let us cover $A \cap C$ by cubes $C\left(x_{i}, r_{i}\right)$ with closure contained in C, such that $\sum_{i=1, \omega} r_{i}^{n}<\varepsilon$. Then $f\left(C\left(x_{i}, r_{i}\right)\right) \subset C\left(f\left(x_{i}\right), b n r_{i}\right)$, so that $f(A \cap C)$ is covered by cubes of total volume $b^{n} n^{n} \sum_{i=1, \infty} r_{i}^{n}<b^{n} n^{n} \varepsilon$. Hence $f(A \cap C)$ has measure zero.
Since A can be covered by countably many such cubes $C, f(A)$ has measure zero.
1.15. Corollary. If $f: U \rightarrow \mathbb{R}^{n}$ be differentiable, where U is an open subset of \mathbb{R}^{n} and $n<p$, then $f(U)$ has measure zero.

Proof: Project $U \times \mathbb{R}^{p-n}$ onto U and apply f. Since $U \times 0$ has measure zero in \mathbb{R}^{p}, so does $f(U)$.
1.16. Definition. If $A \subset M, M$ has measure zero if $h(A \cap U)$ has measure zero for every coordinate system (U, h).
1.17. Corollary. If $f: M_{1}{ }^{n} \rightarrow M_{2}{ }^{p}$ is differentiable and $n<p$, then $f\left(M_{1}{ }^{n}\right)$ has measure zero.
1.18. Definition. Let $\mathcal{M}(p, n)$ denote the space of $p \times n$ matrices, with the differentiable structure of the euclidean space $\mathbb{R}^{p n}$. Let $\mathcal{M}(p, n ; k)$ denote the subspace consisting of matrices of rank k. Thus $\mathcal{M}(p, n ; n)$ is an open subset of $\mathcal{M}(p, n)$ if $p \geq n$; the determinantal criterion for rank proves this. More generally, we have:
1.19. Lemma. $\mathcal{M}(p, n ; k)$ is a differentiable submanifold of $\mathcal{M}(p, n)$ of dimension $k(p+n-k)$, where $k \leq \min (p, n)$.
Proof: Let $E_{0} \in \mathcal{M}(p, n ; k)$; we may assume that E_{0} is of the form, $\left[\begin{array}{ll}A_{0} & B_{0} \\ C_{0} & D_{0}\end{array}\right]$, where A_{0} is a nonsingular $k \times k$ matrix. There is an $\varepsilon>0$ such that if all the entries of $A-A_{0}$ are less than ε, A must also be non-singular. Let U consist of all matrices in $M(p, n)$ of the form $E=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, with all the entries of $A-A_{0}$ are less than ε.
Then E is in $\mathcal{M}(p, n ; k)$ if and only if $D=C A^{-1} B$: for the matrix

$$
\left[\begin{array}{cc}
I_{k} & 0 \\
X & I_{p-k}
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
X A+C & X B+D
\end{array}\right]
$$

has the same rank as E. If $X=-C A^{-1}$, this matrix is

$$
\left[\begin{array}{cc}
A & B \\
0 & C A^{-1} B+D
\end{array}\right] .
$$

If $D=C A^{-1} B$, this matrix has rank k. The converse also holds, for if any element of $-C A^{-1} B+D$ is different from zero, this matrix has rank $>k$.
Let W be the open set in euclidean space of dimension
consisting of matrices $\left[\begin{array}{ll}A & B \\ C & 0\end{array}\right] \begin{gathered}(p n-(p-k)(n-k))=k(p+n-k) \\ \text { with all the entries of } A-A_{0} \text { are less than } \varepsilon \text {. The map }\end{gathered}$

$$
\left[\begin{array}{ll}
A & B \\
C & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
A & B \\
0 & C A^{-1} B+D
\end{array}\right]
$$

is then a diffeomorphism of W onto the neighbourhood $U \cap \mathcal{M}(p, n ; k)$ of E_{0}.
1.20. Theorem. Let U be an open set in \mathbb{R}^{n}, and let $f: U \rightarrow \mathbb{R}^{p}$ be differentiable, where $p \geq 2 n$. Given $\varepsilon>0$, there is a $p \times n$ matrix $A=\left(a_{j}^{i}\right)$ with each $\left|a_{j}^{i}\right|<\varepsilon$, such that $g(x)=f(x)+A \cdot x$ is an immersion (x written as a column matrix.)

Proof: $D g(x)=D f(x)+A$; we would like to choose A in such a way that $D g(x)$ has rank n for all x. I.e., A should be of the form $Q-D f$, where Q has rank n.

We define $F_{k}: \mathcal{M}(p, n ; k) \times U \rightarrow \mathcal{M}(p, n)$ by the equation

$$
F_{k}(Q, x)=Q-D f(x) .
$$

Now F_{k} is a differentiable map, and the domain of F_{k} has dimension $k(p+n-k)+n$. As long as $k<n$, this expression is monotonic in k (its partial derivative with respect to k is $p+n-2 k$). Hence the domain of F_{k} has dimension not greater than

$$
(n-1)(p+n-(n-1))+n=(2 n-p)+p n-1
$$

for $k<n$. Since $p \geq 2 n$, this dimension is strictly less than $p n=\operatorname{dim}(\mathcal{M}(p, n))$.

Hence the image of F_{k} has measure zero in $\mathcal{M}(p, n)$, so that there is an element A of $\mathcal{M}(p, n)$, arbitrarily close to the zero matrix, which is not in the image of F_{k} for $k=0, \ldots, n-1$. Then $A+D f(x)=D g(x)$ has rank n, for each x.
1.21. Theorem. Let U be an open subset of \mathbb{R}^{n}; and let $f: U \rightarrow \mathbb{R}^{p}$ be differentiable. Given $\varepsilon>0$, there are matrices $A(p \times n)$ and $B(p \times 1)$ with entries less than ε in absolute value such that

$$
g(x)=f(x)+A \cdot x+B
$$

has the origin as a regular value.
Remark. The following much more delicate result has been proved by [Sard, A.]: The set of critical values of any differentiable map has measure zero.
Proof of 1.21. Note that the theorem is trivial if $p>n$, since then $f(U)$ has measure zero, and we may choose $A=0$ and B small in such a way that 0 is not in the image of g.
Assume $p \leq n$. We wish $D g\left(x_{0}\right)=D f\left(x_{0}\right)+A$ to have rank p, where x_{0} ranges over all points such that

$$
g\left(x_{0}\right)=0=f\left(x_{0}\right)+A \cdot x_{0}+B .
$$

Hence A is of the form $Q-D f(x)$, and B is of the form $-f(x)-A \cdot x$, where Q is to have rank p. We define $F_{k}: \mathcal{M}(p, n ; k) \times U \rightarrow \mathcal{M}(p, n) \times \mathbb{R}^{p}$ by the equation

$$
F_{k}(Q, x)=(Q-D f(x),-f(x)-(Q-D f(x)) \cdot x) .
$$

Then F_{k} is differentiable. If $k<p$, the dimension of its domain is not greater than $(p-1)\left((p+n-(n-1))+n=p+p n-1\right.$. Hence the image of $F_{k}, k=0, \ldots, p-1$ has measure zero; so that there is a point (A, B) arbitrarily close to to the origin which is not in any such image set. This completes the proof.
1.22. Definition. A covering of a topological space X is locally-finite if every point has a neighbourhood which intersects only finitely many elements of the covering. A refinement of a covering of X is a second covering each element of which is contained in an element of the first covering. A Hausdorff space is paracompact if every open covering has a locally-finite open refinement.
If X is paracompact, and $\left\{U_{a}\right\}$ is an open covering, there is a locally-finite open covering $\left\{V_{a}\right\}$ with $V_{\alpha} \subset U_{\alpha}$ for each α. For let $\left\{W_{\beta}\right\}$ be a locally-finite refinement of $\left\{U_{\alpha}\right\}$; choose $\alpha(\beta)$ so that $W_{\beta} \subset U_{\alpha(\beta)}$ for each β. Set $V_{\alpha 0}=U_{\alpha(\beta)=\alpha 0} W_{\beta}$. Given a neighbourhood intersecting only finitely many W_{β}, it intersects only finitely many V_{α} as well.

1.23. Theorem. A locally compact Hausdorff space having a countable basis is paracompact.

Proof: Let X be paracompact and let U_{1}, U_{2}, \ldots be a basis for X with \bar{U}_{i} compact with each i. There exists a sequence A_{1}, A_{2}, \ldots of compact sets whose union is X, such that $A_{i} \subset \operatorname{Int} A_{i+1}: \operatorname{set} A_{1}=\bar{U}_{1}$. Given A_{i} compact, let k be the smallest integer such that A_{i} is contained in $U_{1} \cup \ldots \cup U_{k}$; Let A_{i+1} equal the closure of this set union \bar{U}_{i+1}.
Let O be an open covering of X. Cover the compact set $A_{i+1} \backslash \operatorname{Int} A_{i}$ by a finite number of open sets $V_{1}, \ldots V_{n}$ where each V_{i} is contained in some element of O, and in the open set $\operatorname{Int} A_{i+2} \backslash A_{i-1}$. Let P_{i} denote the collection $\left\{V_{1}, \ldots V_{n}\right\}$, and let $P=P_{0} \cup P_{1} \cup \ldots$. Prefines O, and since any compact closed neighbourhood C is contained in some A_{i}, C can intersect only finitely many elements of P. \square
1.24. Exercise. Prove that a paracompact space is normal. (First prove that it is regular.)
1.25. Theorem. Let M^{n} be a differentiable manifold, $\left\{U_{a}\right\}$ an open covering of M^{n}. There is a collection $\left(V_{j}, h_{j}\right)$ of coordinate systems on M^{n} such that

1) $\left\{V_{j}\right\}$ is a locally-finite refinement of $\left\{U_{\alpha}\right\}$.
2) $h_{j}\left(V_{j}\right)=C^{n}(3)$.
3) If $W_{j}=h_{j}^{-1}\left(\left(C^{n}(1)\right)\right.$, then $\left\{W_{j}\right\}$ covers M^{n}.

Proof: The proof proceeds along lines similar to the previous one. The only difference is that one chooses the V_{j} to satisfy 2), and makes sure that the sets $h_{j}^{-1}\left(\left(C^{n}(1)\right)\right.$ also cover $A_{i+1} \backslash \operatorname{Int} A_{i}$.
1.26. We wish to construct a C^{∞} function $\varphi\left(x^{1}, \ldots, x^{n}\right)$ such that $\varphi=1$ on $\bar{C}^{n}(1), 0<\varphi<1$ on $C^{n}(2) \backslash \bar{C}^{n}(1), \varphi=0$ on $\mathbb{R}^{n} \backslash C^{n}(2)$.
This function may be defined by the equation $\varphi\left(x^{1}, \ldots, x^{n}\right)=\prod_{i=1, n} \psi\left(x^{i}\right)$, where

$$
\psi(x)=\lambda(2+x) \cdot \lambda(2-x) /[\lambda(2+x) \cdot \lambda(2-x)+\lambda(x-1)+\lambda(-x-1)]
$$

and

$$
\lambda(x)=\begin{array}{ll}
\exp (-1 / x) & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array}
$$

Note that the denominator in the expression for ψ is always positive, and that

$$
\begin{array}{rlll}
\psi(x)=1 & \text { for } & |x| \leq 1 \\
0<\psi(x)<1 & \text { if } & 1<|x|<2 \\
\psi(x)=0 & \text { if } & |x| \geq 2 .
\end{array}
$$

1.27. Definition. Let $f, g: X \rightarrow Y$, where Y is metrisable, and let $\delta(x)$ be a positive continuous function defined on X. Then g is a δ-approximation to f if $d(f(x), g(x))<\delta(x)$ for all x. [If one takes the δ-approximation to f to be a neighbourhood of f in the function space $F(X, Y)$, this imposes a topology on the function space, independent of the metric on Y provided X, Y are paracompact.]
1.28. Theorem. Given a differentiable map $f: M^{n} \rightarrow \mathbb{R}^{p}$ where $p \geq 2 n$, and a continuous positive function δ on M^{n}, there exists an immersion $g: M^{n} \rightarrow \mathbb{R}^{p}$ which is a δ-approximation to f. If rank f $=n$ on the closed set N, we may choose $g|N=f| N$.
Proof: Note that rank $f=n$ on a neighbourhood U of N. Cover M^{n} by U and $M^{n} \backslash N$. Let $\left(V_{j}, h_{j}\right)$ be a refinement of this covering, constructed as in 1.25. As before, $h_{i}\left(\bar{W}_{i}\right)=C^{n}(1)$ and $h_{i}\left(V_{i}\right)=C^{n}(3)$. Let $h_{j}\left(U_{j}\right)=C^{n}(2)$. Let the V_{i} be so indexed with positive and negative integers that those V_{i} with non-positive indices are the ones contained in U. Let $\varepsilon_{1}=\min$ of $\delta(x)$ on the compact set \bar{U}_{i}.
Set $f_{0}=f$. Given $f_{k-1}: M^{n} \rightarrow \mathbb{R}^{p}$, having rank n on $N_{k-1}=\bigcup_{j<k} W_{i}$, consider $f_{k-1} h_{k}^{-1}: C^{n}(3) \rightarrow \mathbb{R}^{p}$.
Let A be a $p \times n$ matrix; let $F_{A}: C^{n}(3) \rightarrow \mathbb{R}^{p}$ be defined by the equation

$$
F_{A}(x)=f_{k-1} h_{k}^{-1}(x)+\varphi(x) A \cdot(x),
$$

where (x) is written (as usual) as a column matrix ($n \times 1$); A is yet to be chosen; and $\varphi(x)$ is the function defined in 1.26.
First, we want $F_{A}(x)$ to have rank n on the set $K=h_{k}\left(N_{k-1} \cap \bar{U}_{k}\right)$; we are given that $f_{k-1} h_{k}^{-1}$ has rank n on K. Thus

$$
D\left(F_{A}(x)\right)=D\left(f_{k-1} h_{k}^{-1}(x)\right)+A \cdot(x) \cdot D \varphi(x)+\varphi(x) A .
$$

($D \varphi$ is a $1 \times n$ matrix.) The map of $K \times \mathcal{M}(p, n)$ into $\mathcal{M}(p, n)$ which carries (x, A) into $D\left(F_{A}(x)\right)$ is continuous. It carries $K \times(0)$ into the open subset $\mathcal{M}(p, n ; n)$ of $\mathcal{M}(p, n)$. Hence if A is sufficiently small, this map will carry $K \times A$ into $\mathcal{M}(p, n ; n)$; our first requirement is that A be this small.
Secondly, we require A to be small enough that $\|A \cdot(x)\|<\varepsilon_{k} / 2^{k}$ for all $x \in C^{n}(3)$.
Finally, by $1.20, A$ may be chosen arbitrarily small so that $f_{k-1} h_{k}^{-1}(x)+A \cdot(x)$ has rank n on $C^{n}(2)$. Let A be chosen to satisfy this requirement.
We then define $f_{k}: M^{n} \rightarrow \mathbb{R}^{p}$ by the equation:

$$
f_{k}(y)=\begin{array}{ll}
f_{k-1}(y)+\varphi\left(h_{k}(y)\right) A \cdot h_{k}(y) & \text { for } y \in V_{k} \\
f_{k-1}(y) & \text { for } y \in M \backslash \bar{U}_{k}
\end{array}
$$

These definitions agree on the overlapping domains, so that f_{k} is differentiable. By the first condition on A, it has rank n on N_{k-1}; by the third condition it has rank n on \bar{W}_{k}. By the second condition, f_{k} is a $\delta / 2^{k}$ approximation to f_{k-1}.
We define $\mathrm{g}(x)=\lim _{k \rightarrow \infty} f_{k}(x)$. Since the covering V_{k} is locally-finite, all the f_{k} agree on a given compact set for k sufficiently large; it follows that g is differentiable and has rank n everywhere. It is also a δ-approximation to f.
1.29. Lemma. If $p>2 n$, any immersion $f: M^{n} \rightarrow \mathbb{R}^{p}$ can be δ-approximated by a $1-1$ immersion g. Iff is 1-1 in a neighbourhood U of the closed set N, we may choose $g|N=f| N$.

Proof: Choose a covering $\left\{U_{\alpha}\right\}$ of M^{n} such that $f \mid U_{\alpha}$ is an embedding (possible by 1.6). Let (V_{i}, h_{i}) be the locally-finite refinement constructed in 1.25 ; let $\varphi(x)$ be the function constructed in 1.26. Let

$$
\varphi_{1}(y)=\begin{array}{ll}
\varphi\left(h_{1}(y)\right) & \text { for } y \in V_{i} \\
0 & \text { for other } y
\end{array}
$$

Then φ_{1} is differentiable. As before, we assume (V_{i}, h_{i}) refines the covering $\left(U, M^{n} \backslash N\right.$) and that those V_{i} with non-positive indices are the ones contained in U.
Let $f_{0}=f$. Given the immersion $f_{k-1}: M^{n} \rightarrow \mathbb{R}^{p}$, we define f_{k} by the equation

$$
f_{k}(y)=f_{k-1}(y)+\varphi_{k}(y) b_{k},
$$

where b_{k} is a point of \mathbb{R}^{p} yet to be chosen. By the argument of the previous theorem, if b_{k} is chosen sufficiently small, f_{k} will have rank n everywhere. The first requirement is that b_{k} be this small; the second requirement is that b_{k} be small enough that f_{k} be a $\delta / 2^{k}$ approximation to f_{k-1}.
Finally, let $N^{2 n}$ be the open subset of $M^{n} \times M^{n}$ consisting of pairs (y, y_{0}), with $\varphi_{k}(y) \neq \varphi_{k}\left(y_{0}\right)$.
Consider the differentiable map

$$
\left(y, y_{0}\right) \mapsto-\left[f_{k-1}(y)-f_{k-1}\left(y_{0}\right)\right] /\left[\varphi_{k}(y)-\varphi_{k}\left(y_{0}\right)\right]
$$

from $N^{2 n}$ into \mathbb{R}^{p}. Since $2 n<p$, the image of $N^{2 n}$ has measure zero, so that b_{k} may be chosen arbitrarily small and not in this image. It follows that $f_{k}(y)=f_{k}\left(y_{0}\right)$ if and only if $\varphi_{k}(y)=\varphi_{k}\left(y_{0}\right)$ and $f_{k-1}(y)=f_{k-1}\left(y_{0}\right)(k>0)$.
Define $g(y)=\lim _{k \rightarrow 0} f_{k}(y)$. If $g(y)=g\left(y_{0}\right)=$ and $y \neq y_{0}$, it would follow that $f_{k-1}(y)=f_{k-1}\left(y_{0}\right)$ and $\varphi_{k}(y)=\varphi_{k}\left(y_{0}\right)$ for all $k>0$. The former condition implies that $f(y)=f\left(y_{0}\right)$, so that y and $=y_{0}$ cannot belong to any one set U_{i}. Because of the latter condition, this means that neither is in any set U_{i} for $i>0$. Hence, they lie in U, contradicting the fact that f is 1-1 on U.
1.30. Definition. Let $f: M^{n} \rightarrow \mathbb{R}^{p}$. The limit set $L(f)$ is the set of $y \in \mathbb{R}^{p}$ such that $y=\lim f\left(x_{n}\right)$ for
some sequence $\left\{x_{1}, x_{2}, \ldots\right\}$ which has no limit point on M^{n}.
Exercise. Show the following:

1) $f\left(M^{n}\right)$ is a closed subset of \mathbb{R}^{p} if and only if $L(f) \subset f\left(M^{n}\right)$
2) f is a topological embedding if and only if f is $1-1$ and $L(f) \cap f\left(M^{n}\right)$ is vacuous.
1.31. Lemma. There exists a differentiable map $f: M^{n} \rightarrow \mathbb{R}$ with $L(f)$ empty.

Proof: Let $\left(V_{i}, h_{i}\right)$ and φ be chosen as in 1.25 and 1.26 with i ranging over positive integers; let

$$
\varphi_{i}(y)=\begin{array}{ll}
\varphi\left(h_{i}(y)\right) & \text { if } y \in V_{i} \\
0 & \text { otherwise. }
\end{array}
$$

Define $f(y)=\sum_{i}\left(j \varphi_{j}(y)\right)$. This sum is finite, since V_{i} is a locally-finite covering. If $\left\{x_{i}\right\}$ is a set of points of M^{n} having no limit point, only finitely many lie in any compact subset of M^{n}. Given m, there is an integer i such that x_{i} is not in $\bar{W}_{1} \cup \ldots \cup \bar{W}_{m}$. Hence $x_{i} \in \bar{W}_{j}$ for some $j>m$, whence $f\left(x_{i}\right)>m$. Thus the sequence $f\left(x_{m}\right)$ cannot converge.
1.32. Corollary. Every M^{n} can be differentiably embedded in $\mathbb{R}^{2 n+1}$ as a closed subset.

Proof: Let $f: M^{n} \rightarrow \mathbb{R} \subset \mathbb{R}^{2 n+1}$ differentiably, with $L(f)=0$. Set $\delta(x) \equiv 1$, and let g be a 1-1 immersion which is a δ-approximation to f. Then $L(g)$ is empty, so that g is a homeomorphism.
1.33. Definition. Let $f: M^{n} \rightarrow N^{p}$ be differentiable. Let N_{l}^{p-q} be a differentiable submanifold of N^{p}. Let $f(x) \in N_{1}^{p-q}$. Let $\left(u^{1}, \ldots, u^{n}\right)$ be a coordinate system about x; and let $\left(v^{1}, \ldots, v^{p}\right)$ be a coordinate system about $f(x)$ such that on $N_{1}{ }^{p-q}, v^{1}=\cdots=v^{p}=0$ (see 1.6). Consider the condition that $\partial\left(v^{1}, \ldots, v^{q}\right) / \partial\left(u^{1}, \ldots, u^{n}\right)$ has rank q at x. This is the transverse regularity condition for f and $N_{1}{ }^{p-q}$ at x. [Exercise: Show that this condition is independent of coordinate system.]

Note that the set of points on which the transverse regularity condition is satisfied is an open subset of $f^{-1}\left(N_{1}{ }^{p-q}\right)$; f is said to be transverse regular on N_{1}^{p-q} if the condition is satisfied foe each x in $f^{-1}\left(N_{1}^{p-q}\right)$.
1.34. Lemma. Iff: $M^{n} \rightarrow N^{p}$ is transverse regular on N_{1}^{p-q} then $f^{-1}\left(N_{1}^{p-q}\right)$ is a differentiable submanifold of dimension $n-q$ (or is empty).

Proof: Let π project \mathbb{R}^{p} onto its first q components; $\pi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$. If $(V, h)=\left(v^{1}, \ldots, v^{p}\right)$ is the coordinate system hypothesised in 1.33, then

$$
N_{1}^{p-q} \cap V=h^{-1} \pi^{-1}(0)
$$

where 0 denotes the origin in \mathbb{R}^{q}; and $f^{-1}\left(N_{1}^{p-q} \cap V\right)=(\pi h f)^{-1}(0)$. Since $\pi h f$ has rank q at $x \in f^{-1}\left(N_{1}^{p-q} \cap V\right)$, the origin is a regular value of $\pi h f$. Hence $(\pi h f)^{-1}(0)$ is a differentiable submanifold of M^{n} of $\operatorname{dim} n-q$ (see 1.12).
1.35. Theorem. Let $f: M^{n} \rightarrow N^{p}$ be differentiable; let N_{1}^{p-q} be a closed subset of M^{n} such that the transverse regularity condition for f and $N_{1}{ }^{p-q}$ holds at each x in $A \cap f^{-1}\left(N_{1}{ }^{p-q}\right)$. Let δ be a positive continuous function on M^{n}. There exists a differentiable map $g: M^{n} \rightarrow N^{p}$ such that

1) g is a δ-approximation to f,
2) g is transverse regular on N_{1}^{p-q}, and
3) $g|A=f| A$.

Proof: There is a neighbourhood U of A in M^{n} such that f satisfies the transverse regularity condition on $U \cap f^{-1}\left(N_{1}{ }^{p-q}\right)$. Cover N^{p} by $N^{p} \backslash N_{1}{ }^{p-q}=Y_{0}$ and coordinate system $\left(Y_{i}, \eta_{i}\right)$ for $i>0$; with coordinate functions $\left(v^{1}, \ldots, v^{n}\right)$ such that $v^{1}=\cdots=v^{p}=0$ on N_{1}^{p-q}. Now the open sets $f^{-1}\left(Y_{i}\right)$ cover M^{n}, as do the open sets $U, M^{n} \backslash A$. Let $\left(V_{j}, h_{j}\right)$ be a refinement of both coverings, constructed as in 1.25. Recall that $h_{j}\left(V_{j}\right)=C^{n}(3), h_{j}\left(U_{j}\right)=C^{n}(2), h_{j}\left(W_{j}\right)=C^{n}(1)$, and the W_{j} cover M^{n}. The V_{j} are to be indexed with positive and negative integers so that those V_{j} which are contained in U are the ones with non-positive indices.
Let φ be as in 1.26, and define

$$
\varphi_{i}(x)=\begin{array}{ll}
\varphi\left(h_{i}(x)\right) & \text { for } x \in V_{i} \text { and } \\
0 & \text { elsewhere. }
\end{array}
$$

For each j choose $i(j) \geq 0$ so that $f\left(V_{j}\right)$ is contained in $Y_{i(j)}$.
Set $f_{0}=f$. Suppose f_{k-1} is defined and satisfies the transverse regularity condition for $N_{1}{ }^{p-q}$ at each point of the intersection of $f_{k-1}{ }^{-1}\left(N_{1}^{p-q}\right)$ with $\cup_{j<k} \bar{W}_{j}$. Furthermore suppose that $f_{k-1}{ }^{-1}\left(\bar{U}_{j}\right) \subset Y_{i(j)}$ for each j. Setting $i=i(k)$, it follows in particular that $f_{k-1}^{-1}\left(\bar{U}_{k}\right) \subset Y_{i}$.
Consider

$$
\pi \eta_{i} f_{k-1} h_{k}^{-1}: C^{n}(2) \rightarrow \mathbb{R}^{q}
$$

By 1.21 , there is an arbitrarily small affine function $L(x)=A \cdot(x)+B$ such that when added to the previous function, the resulting map has the origin as a regular value. Consider \mathbb{R}^{q} as the first q coordinates in \mathbb{R}^{p}, and define

$$
f_{k}(x)=\begin{array}{ll}
\eta_{i}^{-1}\left(\eta_{i} f_{k-1}(x)+L\left(h_{k}(x) \varphi_{k}(x)\right)\right. & \text { for } x \text { in a neighbourhood of } \bar{U}_{k} \\
f_{k-1}(x) & \text { for } x \text { in } M^{n} \backslash U_{k} .
\end{array}
$$

Here L is yet to be chosen. Of course, we must choose L small enough that

$$
\eta_{i} f_{k-1}+L \varphi_{k}
$$

lies in $C^{n}(1)$ for $x \in \bar{U}_{k}$, in order that k_{i}^{-1} may be applied to it. This is the first requirement on L. Secondly, we choose L small enough that f_{k} is a $\delta / 2^{k}$ approximation to f_{k-1}. Thirdly choose L small enough so that $f_{k}\left(\bar{U}_{j}\right)$ is contained in $Y_{i(j)}$ for each j. This is possible since only a finite number of the sets \bar{U}_{j} can intersect \bar{U}_{k}.
Now f_{k} by definition satisfies the transverse regularity condition for N_{l}^{p-q} at each point of $f_{k}^{-1}\left(N_{\mathrm{l}}^{p-q}\right) \cap \bar{W}_{k}$. We want to choose L small enough that the condition is satisfied at each point of this intersection of $f_{k}^{-1}\left(N_{1}^{p-q}\right)$ with $\cup_{j<k} \bar{W}_{j}$. It is sufficient to consider the intersection of this set with \bar{U}_{k}; let this intersection be denoted by K. Consider the function which maps the pair (x, L) $(x \in K)$ into

$$
\left(f_{k}(x), D\left(\pi \eta_{i} f_{k-1} h_{k}^{-1}\right) \cdot\left(h_{k}(x)\right) \in N_{\mathrm{l}}^{p-q} \times \mathcal{M}(q, n) .\right.
$$

This function is continuous and carries $K \times(0)$ into the set

$$
\left[\left(N^{p} \backslash N_{\mathrm{l}}^{p-q}\right) \times \mathcal{M}(q, n)\right] \cup\left[N_{\mathrm{l}}^{p-q} \times \mathcal{M}(q, n ; q)\right],
$$

which is open in $N_{1}^{p-q} \times \mathcal{M}(q, n)$. Hence for L sufficiently small, (K, L) is carried into this set, so that f_{k} satisfies the transverse regularity condition for N_{l}^{p-q} at each point of $f_{k}^{-1}\left(N_{\mathrm{l}}^{p-q}\right) \cap\left(\cup_{j<k} \bar{W}_{j}\right)$. We define $g(x)=\lim _{k \rightarrow \infty} f_{k}(x)$, as usual.

Chapter II Vector Space Bundles

2.1 Definition. An n-dimensional real vector space bundle ξ is a triple (π, a, s) where $\pi: E \rightarrow B$ is an onto continuous map between Hausdorff spaces that satisfy the following:

1) $F_{b}=\pi^{-1}(b)$, called a fibre, is an n-dimensional real vector space with $s: R \times E \rightarrow E$ carrying $R \times F_{b}$ into F_{b}, and $a: U\left(F_{b} \times F_{b}\right) \subset E \times E \rightarrow U\left(F_{b}\right)$ carrying $F_{b} \times F_{b}$ into F_{b}, as scalar product and vector addition, respectively.
2) (Local triviality) For each $b \in B$, there is a neighbourhood U of b and a homeomorphism $\varphi: U \times \mathbb{R}^{n} \rightarrow \pi^{-1}(U)$ such that φ is a vector space isomorphism of $b^{\prime} \times \mathbb{R}^{n} \cong F_{b^{\prime}}$, for each $b^{\prime} \in U$.

If in 2) the neighbourhood U may be taken as all B, the bundle is said to be the trivial bundle.
If ξ, η are n-dimensional and p-dimensional vector space bundles, respectively, we define the product bundle $\xi \times \eta$ as follows:

$$
\begin{aligned}
E(\xi \times \eta) & =E(\xi) \times E(\eta) \\
B(\xi \times \eta) & =B(\xi) \times B(\eta) \\
(\pi \times \lambda)(x, y) & =((\pi(x), \lambda(y))
\end{aligned}
$$

where π, λ are the projections in ξ, η respectively and $F_{b}(\xi \times \eta)$ has the usual product structures for vector spaces.
If U is a subset of $B(\xi)$, then $\xi \mid U$ denotes the bundle $\pi: \pi^{-1}(U) \rightarrow U$. It is called the restriction of the bundle to U.
2.2 Definition. Let M^{n} be a differentiable manifold and let x_{0} be in M^{n}. A tangent vector at x_{0} is an operation X which assigns to each differentiable function f defined in a neighbourhood U of x_{0}, a real number, that is, $X: \mathcal{O}(U) \rightarrow \mathbb{R}$. The following conditions must be satisfied:

1) If g is a restriction of $f, X(g)=X(f)$.
2) $X(c f+d g)=c X(f)+d X(g)$ for $c, d \in \mathbb{R}$
3) $X(f \cdot g)=X(f) \cdot g\left(x_{0}\right)+f\left(x_{0}\right) \cdot X(g)$, where the dot means ordinary real multiplication.

Then $X(1)=X(1 \cdot 1)=X(1)+X(1)$, by 3$)$. Hence $X(1)=0$ and $X(c)$ also $=0$, by 2$)$.
If one thinks of a tangent vector as being the velocity vector of a curve lying in the manifold, then $X(f)$ is merely the derivative of f with respect to the parameter of the curve. This is made more precise below.
2.3 Lemma. Let $\left(u^{1}, \ldots, u^{n}\right)$ be a coordinate system about x. Let X be a tangent vector at x. Then X may be written uniquely as a linear combination of the operators $\partial / \partial u^{i}$:

$$
X=\sum \alpha^{i} \partial / \partial u^{i} .
$$

Proof: We assume $u(x)$ is the origin. Given any $f\left(u^{1}, \ldots, u^{n}\right)$ define

$$
g\left(u^{1}, \ldots, u^{n}\right)=\begin{array}{ll}
{\left[f\left(u^{1}, \ldots, u^{n}\right)-f\left(0, u^{2}, \ldots, u^{n}\right)\right] / u^{1}} & \text { if } u^{1} \neq 0 \\
\partial f\left(0, u^{2}, \ldots, u^{n}\right) / \partial u^{1} & \text { if } u^{1}=0 .
\end{array}
$$

To see that g is differentiable, note that

$$
g\left(0, u^{2}, \ldots, u^{n}\right)=\int_{[0,1]}\left[\partial f\left(0, u^{2}, \ldots, u^{n}\right) / \partial u^{1}\right] d t .
$$

(Then $f\left(u^{1}, \ldots, u^{n}\right)=u^{1} g_{1}\left(u^{1}, \ldots, u^{n}\right)+f\left(0, u^{2}, \ldots, u^{n}\right)$.) Similarly,

$$
f\left(0, u^{2}, \ldots, u^{n}\right)=u^{2} g_{2}\left(u^{2}, \ldots, u^{n}\right)+f\left(0,0, u^{3}, \ldots, u^{n}\right),
$$

where $g_{2}(0)=\partial f / \partial u^{2}(0)$. Finally we have $f\left(u^{1}, \ldots, u^{n}\right)=\sum u^{i} g_{i}+f(0)$, where $g_{i}(0)=\partial f / \partial u^{i}(0)$. Thus

$$
X(f)=\sum X\left(u^{i}\right) g_{i}(0)+0 \cdot X\left(g_{i}\right)=\sum \alpha^{i} \partial f / \partial u^{i}(0),
$$

where $\alpha^{i}=X\left(u^{i}\right)$.
Remark. If $\left(v^{1}, \ldots, v^{n}\right)$ is another coordinate system about x, and $X=\Sigma \beta^{i} \partial / \partial v^{j}$, then $\alpha^{i}=X\left(u^{i}\right)=\sum \beta^{i} \partial u^{i} / \partial v^{j}$. The α^{i} are called the components of the vector X with respect to the coordinate system (u^{1}, \ldots, u^{n}).
2.4 Alternate definition. A tangent vector at x is an assignment to every coordinate system $\left(u^{1}, \ldots, u^{n}\right)$ about x of an element $\left(\alpha^{1}, \ldots, \alpha^{n}\right)$ of \mathbb{R}^{n}, with the requirement that if $\left(\beta^{\prime}\right)$ is assigned to the system $\left(v^{1}, \ldots, v^{n}\right)$, then $\alpha^{i}=\sum \beta^{i} \partial u^{i} / \partial v^{j}$. The derivation operator X is then defined as $\sum \alpha^{i} \partial / \partial u^{i}$. One checks readily that
a) $X(f)$ is independent of the coordinate system used, and
b) $\quad X(f)$ satisfies requirements 1$), 2$), and 3) for a tangent vector.
2.5. Definition. For each x in M^{n}, the tangents at x form an n-dimensional vector space (by 2.3, the operations $\partial / \partial u^{i}$ form a basis). Let the totality of these be denoted by $E(\tau)$; define $\pi: E(\tau) \rightarrow M^{n}$ as mapping all the tangent vectors X at x_{0} into x_{0}. The local product structure around $x_{0} \in U$ is given by $\varphi_{U}: U \times \mathbb{R}^{n} \rightarrow E(\tau)$, where $(U, h)=\left(u^{1}, \ldots, u^{n}\right)$ is a coordinate system on M^{n}, and φ_{U} is defined as follows:

$$
\varphi_{U}\left(x_{0}, a^{1}, \ldots, a^{n}\right)=\text { tangent vector } X=\sum \alpha^{i} \partial / \partial u^{i} \text { at } x_{0} .
$$

Since φ_{U} is to be a homeomorphism, this structure imposes a topology on $E(\tau)$; since $\varphi_{V}{ }^{-1} \varphi_{U}$ is a homeomorphism on $(U \cap V) \times \mathbb{R}^{n}$, this topology is unambiguously determined. One checks immediately that φ_{U} gives us a vector space bundle isomorphism for each fibre.

Indeed, $\varphi_{V}{ }^{-1} \varphi_{U}$ is a C^{∞} map on $(U \cap V) \times \mathbb{R}^{n}$, so that $E(\tau)$ is a differentiable manifold of dimension $2 n$ (using definition 1.2 of a differentiable manifold). The map π is differentiable of rank n.
This bundle τ is called the tangent bundle of M^{n}.
2.6. Definition. If $f: M_{1}{ }^{n} \rightarrow M_{2}{ }^{m}$, there is an induced map $d f: E\left(\tau_{1}\right) \rightarrow E\left(\tau_{2}\right)$ defined as follows: $d f(X)=Y$, where $Y(g)=X(g f)$. If X is a vector at x_{0}, Y is a vector at $f\left(x_{0}\right)$. This is clearly linear on each fibre; it is called the derivative map.
If (U, h) and (V, k) are coordinate systems about $x_{0}, f\left(x_{0}\right)$ respectively, and $\left(\alpha^{i}\right),\left(\beta^{i}\right)$ are the respective components of X and Y with respect to these coordinate systems, then $\left(\beta^{i}\right)=D\left(k f h^{-1}\right)\left(\alpha^{i}\right)$ where the vector components are written as column matrices, as usual.
2.7. Definition. Let ξ, η be two n-dimensional vector bundles. A bundle map $f: \xi \rightarrow \eta$ is a continuous map of $E(\xi)$ into $E(\eta)$ which carries each fibre isomorphically onto a fibre. The induced map $f_{B}: B(\xi) \rightarrow B(\eta)$ is automatically continuous.

If $B(\xi)=B(\eta)$ and the induced map is the identity, f is said to be an equivalence. Note that if f is an equivalence, it is a homeomorphism: Locally f is just a map $U \times \mathbb{R}^{n} \rightarrow V \times \mathbb{R}^{n}$. The projection of f^{1} into the factor U is continuous, because f_{B}^{-1} is the identity. But f may be given by a non-singular
matrix function of $x \in U ; f^{1}$ is the inverse of this matrix, so that the projection of f^{1} into the factor \mathbb{R}^{n} is continuous. Hence f^{1} is continuous.

If there is an equivalence of ξ onto η, we write $\xi \simeq \eta$.
2.8. Lemma. Given a bundle η with projection map $\lambda: E(\eta) \rightarrow B(\eta)$, and a map $f: B_{1} \rightarrow B(\eta)$, there is a bundle $\pi: E_{1} \rightarrow B_{1}$ and a bundle map $g: E_{1} \rightarrow E(\eta)$ such that $\lambda g=f \pi$. Furthermore, E_{1} is unique up to an equivalence.

$$
\begin{aligned}
& E_{1} \xrightarrow{g} E(\eta) \\
& \pi \downarrow \quad \downarrow \lambda \\
& B_{1} \rightarrow B(\eta)
\end{aligned}
$$

Remark. E_{1} is called the induced bundle by f and is often denoted by $f^{*} \eta$.
Proof: Let E_{1} be that subset of $B_{1} \times E(\eta)$ consisting of points (b, e) such that $f(b)=\lambda(e)$. Define $\pi(b, e)=b ; g(b, e)=e$. To show that E_{1} is a vector space bundle, let $\varphi: V \times \mathbb{R}^{n} \rightarrow E(\eta)$ be a product neighbourhood in $E(\eta)$, and let $f(U) \subset V$. Then define $\varphi_{1}: U \times \mathbb{R}^{n} \rightarrow E_{1}$ by $\varphi_{1}(b, x)=(b, \varphi((b), x))$. Then φ_{1} is continuous and $1-1$; its image equals $\pi^{-1}(U)$. Its inverse $\varphi_{1}{ }^{-1}$ carries (b, e) into ($b, p \varphi^{-1}(e)$), where p is the natural projection $V \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, hence it is continuous. The map g is an isomorphism on each fibre.
Now suppose $g^{\prime}: E^{\prime} \rightarrow E(\eta)$ is a bundle map, where $\pi^{\prime}: E^{\prime} \rightarrow B_{1}$ is a bundle and $\lambda g^{\prime}=f \pi^{\prime}$. We map $E^{\prime} \rightarrow E_{1}$ by mapping

$$
e^{\prime} \mapsto\left(\pi^{\prime}\left(e^{\prime}\right), g^{\prime}\left(e^{\prime}\right)\right) \in E_{1} .
$$

Because g^{\prime} is an isomorphism on each fibre, so is this map; and it induces the identity on the base space. Hence it is an equivalence.

$$
\begin{gathered}
\stackrel{g}{E_{1}} \stackrel{g^{\prime}}{\rightarrow E(\eta)} \stackrel{g^{\prime}}{\leftarrow} E^{\prime} \\
\pi \downarrow \\
B_{1} \rightarrow B(\eta) \\
\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow \pi^{\prime}}{\leftarrow}
\end{gathered}
$$

2.9. Definition. Let ξ, η be two bundles over B. The Whitney sum $\xi \oplus \eta$ is a bundle defined as the induced bundle $d^{*}(\xi \times \eta)$ for $d: B \rightarrow B \times B$ be the diagonal map and the product bundle $E(\xi) \times E(\eta)$ $\rightarrow B \times B$.

$$
\begin{array}{cccc}
\xi \oplus \eta=d^{*}(\xi \times \eta) & \rightarrow E(\xi) \times E(\eta) \\
\downarrow & & \downarrow \\
B & \underset{d}{ } & B \times B
\end{array}
$$

The proof of the following is left as an exercise.
a) the fibre over b in $\xi \oplus \eta$ is $F_{b}(\xi) \times F_{b}(\eta)$, so that $\operatorname{dim}(\xi \oplus \eta)=\operatorname{dim} \xi+\operatorname{dim} \eta$,
b) \oplus is commutative: $\xi \oplus \eta \simeq \eta \oplus \xi$,
c) \oplus is associative: $(\xi \oplus \eta) \oplus \varsigma \simeq \xi \oplus(\eta \oplus \varsigma)$.
2.10. Definition. If ξ, η are bundles over B, then $g: E(\xi) \rightarrow E(\eta)$ is a homomorphism if

1) it maps each fibre linearly into a fibre,
2) the induced map on B is the identity.

Note that an equivalence is both a bundle map and a homomorphism. An embedding of bundles is a 1-1 homomorphism.
2.11. Theorem. Iff $: E(\xi) \rightarrow E(\eta)$ maps each fibre linearly into a fibre, then f may be factored into a homomorphism followed by a bundle map.

Proof: Let π_{1}, π_{2} be the projections in ξ, η, respectively.
Let $f_{B}: B(\xi) \rightarrow B(\eta)$ be the map induced by f. Let $E_{1}=f_{B}{ }^{*} \eta$ be the bundle induced by f_{B}; let g be the bundle map $E_{1} \rightarrow E(\eta)$ and π be the projection $E_{1} \rightarrow B(\eta)$.

Define $h: E(\xi) \rightarrow B(\xi) \times E(\eta)$ by the equation $h(e)=\left(\pi_{1}(e), f(e)\right)$. The image of h actually lies in that subset of $B(\xi) \times E(\eta)$ which is E_{1}; then h is a homomorphism. From the definition $f=g h$.
2.12. Lemma. Let ξ, η be bundles over B of dimensions n, p, respectively; let $g: \xi \rightarrow \eta$ be a homomorphism. If g is onto, then the kernel (g) is a bundle. If g is $1-1$, then the cokernel (g), i.e., the quotient η / image (g), is a bundle.

Proof: Suppose g is 1-1 (i.e., has rank n when restricted to each fibre.) In $E(\eta)$, we define $e \sim e^{\prime}$ if $e-e^{\prime}$ exists and is in the image of g. We identify the elements of these equivalence classes; the resulting identification space is defined to be $E(\eta / g(\xi))$. It is a bundle over B with projection naturally defined and each fibre is a vector space of dimension $p-n$. We need only to show the existence of a local product structure.
Let U be an open set in B, with $\xi \mid U$ equivalent to $U \times \mathbb{R}^{n}$ and $\eta \mid U$ equivalent to $U \times \mathbb{R}^{p}$. Let g_{0} denote the homomorphism of $U \times \mathbb{R}^{n} \rightarrow U \times \mathbb{R}^{p}$ induced by g. Now $(\eta / g(\xi)) \mid U$ is equivalent to the quotient $U \times \mathbb{R}^{p} / g_{0}\left(U \times \mathbb{R}^{n}\right)$, so that it suffices to show that this latter quotient is locally a product.
g_{0} is given by a matrix $M(b) \in \mathcal{M}(p, n)$ which depends continuously on the point $b \in U$. Given b_{0}, we may assume that in a neighbourhood U_{0} of b_{0}, the first n rows are independent. We define $h: U_{0} \times \mathbb{R}^{n} \times \mathbb{R}^{p-n} \rightarrow U \times \mathbb{R}^{p}$ as the linear function on whose matrix (non-singular) is

$$
\left[\begin{array}{c|c}
M(b) & 0 \\
\hline I_{p-n}
\end{array}\right]
$$

The image of $U_{0} \times \mathbb{R}^{n} \times 0$ under h is just $g_{0}\left(U_{0} \times \mathbb{R}^{n}\right)$; since h is an equivalence, it induces an equivalence of

$$
U_{0} \times \mathbb{R}^{p-n} \simeq U_{0} \times \mathbb{R}^{n} \times \mathbb{R}^{p-n} / U_{0} \times \mathbb{R}^{n} \times 0 \text { onto } U_{0} \times \mathbb{R}^{p} / g_{0}\left(U_{0} \times \mathbb{R}^{n}\right) .
$$

Secondly, suppose g is onto (i.e., it has rank p on each fibre.) $E\left(g^{-1}(0)\right)$ is defined as that subset of $E(\xi)$ consisting of points e with $g(e)=0$. Again, we need to show the existence of a local product structure. Let U, g_{0}, and $M(b)$ be as above. Given b_{0}, we may assume that the first p columns of are independent in the neighbourhood U_{0} of b_{0}. We define $h: U_{0} \times \mathbb{R}^{n} \rightarrow U_{0} \times \mathbb{R}^{p} \times \mathbb{R}^{n-p}$ by the matrix function

$$
\left[\right]
$$

Now h followed by the natural projection of $U_{0} \times \mathbb{R}^{p} \times \mathbb{R}^{n-p}$ onto $U_{0} \times \mathbb{R}^{p}$ equals $g_{0} \mid U$. Hence h^{-1} maps $U_{0} \times 0 \times \mathbb{R}^{n-p}$ onto $g_{0}^{-1}\left(U_{0} \times 0\right)$; since h is an equivalence, so is the restriction of h^{-1} to $U_{0} \times 0 \times \mathbb{R}^{n-p}$.

Remark. If g is onto, $\xi / g^{-1}(0)$ is a bundle, being the quotient of the inclusion homomorphism $g^{-1}(0) \rightarrow \xi$. If g is $1-1, g(\xi)$ is a bundle, being the kernel of the projection homomorphism $\eta \rightarrow g(\xi)$.
2.13. Definition. If φ is a non-negative function on B, the support of φ is the closure of the set of x with $\varphi(x)>0$. A partition of unity is a collection $\left\{\varphi_{a}\right\}$ of non-negative functions on B, such that the sets $\left\{C_{\alpha}\right\}=\left\{\operatorname{support}\left(\varphi_{\alpha}\right)\right\}$ form a locally-finite covering of B, and $\sum \varphi_{\alpha}(x)=1$ (this is a finite sum for each x.)
2.14. Lemma. Let B be a normal space; $\left\{U_{a}\right\}$ a locally-finite open covering of B. Then there is a partition of unity $\left\{\varphi_{\alpha}\right\}$ with $\operatorname{support}\left(\varphi_{\alpha}\right) \subset U_{\alpha}$ for each α.

Proof: First, we show that there is an open covering $\left\{V_{\alpha}\right\}$ of B with $\bar{V}_{\alpha} \subset U_{\alpha}$ for each α. Assume that U_{α} are indexed by a set of ordinals (well-ordering theorem.) Let V_{α} be defined for all $\alpha<\beta$ and assume that the sets V_{α} along with the sets U_{α} for $\alpha \geq \beta$ cover B. Consider the set $A(\beta)=B \backslash \bigcup_{\alpha<\beta} V_{\alpha} \backslash \bigcup_{\alpha>\beta} U_{\alpha}$. Then $A(\beta) \subset U_{\beta}$. Let V_{β} be an open set containing the closed set $A(\beta)$, with $\bar{V}_{\beta} \subset U_{\beta}$ (normality.) This completes the construction of the V_{α}.
Now let g_{α} be a function which is positive on \bar{V}_{α} and 0 outside U_{α} (normality again.) Define $\varphi_{a 0}(x)=g_{a 0}(x) / \sum g_{\alpha}(x)$. Since $\left\{U_{a}\right\}$ is locally-finite, the sum in the denominator is finite and positive, so $\left\{\varphi_{a}\right\}$ is well-defined.
Remark ${ }^{1}$. If B is a differentiable manifold, φ_{α} may be chosen to be differentiable: Cover B with coordinate systems (V_{i}, h_{i}) as in 1.25 refining the covering $U_{\alpha}, B \backslash \bar{V}_{\alpha}$. Let $\varphi_{i}(y)=\varphi_{i}\left(h_{i}(y)\right)$ for $y \in V_{i}$, and $\varphi_{i}(y)=0$ otherwise (φ as in 1.26.) Let $g_{a}(y)=\sum \varphi_{i}(y)$, where the sum extends over all i such that $V_{i} \subset U_{\alpha}$.
2.15. Lemma. Let B be paracompact and let $0 \rightarrow \xi \xrightarrow{i} \eta \stackrel{\varphi}{\rightarrow} \zeta \rightarrow 0$ be an exact sequence of homomorphism of bundles. Then there is equivalence $f: \eta \rightarrow \xi \oplus \zeta$, with fi the natural inclusion and φf^{-1} the natural projection.

Proof: Let $\operatorname{dim} \xi=n ; \operatorname{dim} \zeta=p$.
We first construct a Riemannian metric on η (i.e., a continuous inner product in $E(\eta)$.) Let $\left\{U_{a}\right\}$ be a locally-finite covering of B with $\eta \mid U_{\alpha}$ trivial; let g_{α} be the corresponding projection of $\eta \mid U_{\alpha}$ onto \mathbb{R}^{n+p}. Let $\left\{\varphi_{\alpha}\right\}$ be a partition of unity with $\operatorname{support}\left(\varphi_{\alpha}\right) \subset U_{\alpha}$.
If e, e^{\prime} are in $E(\eta)$ and $\pi(e)=\pi\left(e^{\prime}\right)$, define $e \cdot e^{\prime}=\sum_{\alpha} \varphi_{\alpha}(\pi(e)) g_{\alpha}(e) \cdot g_{\alpha}\left(e^{\prime}\right)$, where the dot on the right hand side is the ordinary scalar product in \mathbb{R}^{n+p}. This is a finite sum; it satisfies the axioms for a scalar product.
The way we use the Riemannian metric is to break η up into $i E(\xi)$ and its orthogonal complement. Let ξ^{\prime} be the image of ξ in η and let $E\left(\zeta^{\prime}\right)$ be defined as that subset of consisting of elements which are orthogonal to $i E\left(\xi^{\prime}\right)$. In order to show that ζ^{\prime} has a local product structure, consider the homomorphism

$$
h: \eta \rightarrow \zeta^{\prime}
$$

which sends each vector into its orthogonal projections in ξ^{\prime}. [Verification that h is continuous. Over any coordinate neighbourhood U we can choose a basis $a_{1}, \ldots a_{n}$ for the fibre of ξ^{\prime}. Then the

[^0]function h carries $v \in E(\eta)$ into $\sum_{j} a_{j} \in E\left(\xi^{\prime}\right) \subset E(\eta)$, where $t_{j}=\sum B_{j k}\left(v \cdot a_{k}\right)$ and where $\left(B_{j k}\right)$ denotes the inverse matrix to $\left(a_{j} \cdot a_{k}\right)$.] Since h is onto, its kernel ζ^{\prime} is again a vector space bundle.

Now the bundle $i\left(\xi^{\prime}\right)=\xi^{\prime}$ is equivalent to ξ. It remains to show that ξ^{\prime} is equivalent to ζ and that η is equivalent to $\xi^{\prime} \oplus \zeta^{\prime}$. The former follows immediately from the fact that $\varphi \mid \zeta^{\prime}$ is a homomorphism; form rank considerations it must be 1-1 and onto as well. The latter follows by noting that $E\left(\xi^{\prime} \oplus \zeta^{\prime}\right)$ is defined as the subset of $E\left(\xi^{\prime}\right) \times E\left(\zeta^{\prime}\right)$ consisting of points (e_{1}, e_{2}) such that $\pi\left(e_{1}\right)=\pi\left(e_{2}\right)$. Consider the map f of $E\left(\xi^{\prime} \oplus \zeta^{\prime}\right)$ into $E(\eta)$ obtained by taking $\left(e_{1}, e_{2}\right)$ into their sum in $E(\eta)$ (their sum exists because e_{1} and e_{2} lie in the same fibre.) This is clearly a homomorphism; from rank considerations, it must be 1-1 and onto.
2.16. Definition. Let M_{1}, M_{2} be differentiable manifolds and let $f: M_{1} \rightarrow M_{2}$ be an immersion. The normal bundle v_{f} is defined as follows:

Let τ_{1}, τ_{2} be the tangent bundles of M_{1}, M_{2} respectively. By 2.11 , the map $\mathrm{d} f: E\left(\tau_{1}\right) \rightarrow E\left(\tau_{2}\right)$ may be factored into a homomorphism h of $E\left(\tau_{1}\right)$ into $E\left(f^{*} \tau_{2}\right)$ followed by a bundle map g. Now h is a 1-1 homomorphism because f is an immersion; hence by $2.12, f^{*} \tau_{2} /$ image (h) is a bundle over M_{1}. It is called the normal bundle v_{f}.

Then $0 \rightarrow \tau_{1} \rightarrow f^{*} \tau_{2} \rightarrow v_{f} \rightarrow 0$ is an exact sequence if homomorphisms, so that by $2.15, f^{*} \tau_{2}$ is equivalent to $\tau_{1} \oplus v_{f}$. Indeed, given a Riemannian metric on $f^{*} \tau_{2}$, v_{f} is equivalent to the orthogonal complement of the image of τ_{1}.
Let us consider the case $M_{2}=\mathbb{R}^{n+p}$, where $\operatorname{dim} M_{1}=n$. Then τ_{2} is the trivial bundle, so that $f^{*} \tau_{2}$ is as well. (Proof: If $f: B_{1} \rightarrow B(\eta)$ and η is trivial, so is $f^{*} \eta$. We have the diagram

$$
f: B_{1} \rightarrow \stackrel{\downarrow \pi}{B}
$$

$E\left(f^{*} \eta\right)$ is defined as that subset of $B_{1} \times\left(B \times \mathbb{R}^{n}\right)$ consisting of points $\left(b_{1}, b, x\right)$ such that $f\left(b_{1}\right)=(b, x)$, i.e., of all points $\left(b_{1}, f\left(b_{1}\right), x\right)$. If we map this into $\left(b_{1}, x\right)$, we obtain an equivalence of $f^{*} \eta$ with the bundle $B_{1} \times \mathbb{R}^{n} \rightarrow B_{1}$.
Thus $\tau_{1} \oplus v_{f}$ is equivalent to a trivial bundle. In what follows, we investigate the following question: Given ξ, does there exist an η with $\xi \oplus \eta$ trivial? Using 1.28 , this is always the case for ξ the tangent bundle of an n-manifold, and indeed η may be chosen also to have dimension n. A more general answer appears in 2.19.
2.17. Definition. Let $f: M_{1}{ }^{n} \rightarrow M_{2}^{p}$; If f has rank p at every point of M_{1}, it is said to be regular. If f is regular, the homomorphism $h: \tau_{1} \rightarrow f^{*} \tau_{2}$ given by 2.11 is an onto map. By 2.12, the kernel of h is a bundle α_{f}. It is called the bundle along the fibre.

Note that $f^{1}(y)$ is a submanifold of M_{1} of dimension $n-p$ (by 1.12 or 1.34.) The inclusion i_{y} of $f^{1}(y)$ into M_{1} induces an inclusion $d i_{y}$ of its tangent bundle into τ_{1}. The kernel of h consists precisely of the vectors which are in the image of some $d i_{y}$, i.e., the vectors tangent to the submanifolds $f^{1}(y)$ are the ones carried into 0 by h.
One has the exact sequence $0 \rightarrow \alpha_{f} \rightarrow \tau_{1} \rightarrow f^{*} \tau_{2} \xrightarrow{g} 0$, so that by $2.15, \tau_{1}$ is equivalent to $\alpha_{f} \oplus f^{*} \tau_{2}$.
2.18. Definition. A bundle ξ is of finite type if B is normal and may be covered by a finite number of neighbourhoods $U_{1}, \ldots U_{k}$ such that $\xi \mid U_{i}$ is trivial for each i.
2.19. Lemma. ξ is of finite type if B is compact, or paracompact finite dimensional.

Proof: The former statement is clear; let us consider the latter. By definition, the dimension of B is not greater than n if every covering has an open refinement such that

$$
\begin{equation*}
\text { no point of } B \text { is contained in more than } n+1 \text { elements of the refinement. } \tag{*}
\end{equation*}
$$

It is a standard theorem of topology that an n-manifold has dimension n in this sense. Cover B by open sets U, with $\xi \mid U$ trivial; let $\left\{V_{a}\right\}$ be an open refinement of this covering satisfying (${ }^{*}$). By 1.22 , we may assume that $\left\{V_{\alpha}\right\}$ is locally-finite as well. Let $\left\{\varphi_{\alpha}\right\}$ be a partition of unity with $\operatorname{support}\left(\varphi_{\alpha}\right) \subset V_{\alpha}$ for each α (2.14.)

Let A_{i} be the set of unordered $(i+1)$-tuple of distinct elements of the index set of $\left\{\varphi_{a}\right\}$. Given a in A_{i}, where $a=\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$, let $W_{i a}$ be the set of all x such that $\varphi_{a}(x)<\min \left\{\varphi_{a 0}(x), \ldots, \varphi_{a n}(x)\right\}$ for all $\alpha \neq \alpha_{1}, \ldots, \alpha_{i}$. Each set $W_{i a}$ is open, and $W_{i a} \cap W_{i b}=\emptyset$ if $a \neq b$. Also $W_{i a}$ is contained in the intersection of the supports of $\varphi_{\alpha 0}(x), \ldots, \varphi_{a i}(x)$, and hence in some set V_{α}. If we set X_{i} equal to the union of all sets $W_{i a}$, for fixed $i, \xi \mid X_{i}$ is trivial. Note that $\xi \mid W_{i a}$ is trivial and $W_{i a}$ are disjoint.
Finally, the sets X_{0}, \ldots, X_{n} cover B. Given x in B, x is contained in at most $n+1$ of the sets V_{α}, so that at most $n+1$ of the functions φ_{α} are positive at x. Since some φ_{α} is positive at x, x is contained in one of the sets $W_{i a}$ for $0 \leq i \leq n$.
[The intuitive idea of the proof is as follows: Consider an n-dimensional simplicial complex, with φ_{a} the barycentric coordinate of x with respect to the vertex α. The sets $W_{0 a}$ will be disjoint neighbourhoods of the vertices, the sets $W_{1 a}$ disjoint neighbourhoods of the open 1-simplices, and so on.]
2.20. Theorem. If ξ is of finite type, there is a bundle η such that $\xi \oplus \eta$ is trivial.

Proof: We proceed by showing that ξ may be embedded in a trivial bundle $B \times \mathbb{R}^{m}$, so that we have the exact sequence $0 \rightarrow \xi \rightarrow B \times \mathbb{R}^{m} \rightarrow B \times \mathbb{R}^{m} / i(\xi) \rightarrow 0$ by 2.12. The theorem then follows from 2.15. (Paracompactness is not needed since the trivial bundle clearly has a Riemannian metric.) Cover B by finitely many neighbourhoods U_{1}, \ldots, U_{k} with $\xi \mid U_{i}$ trivial for each i. Let $\varphi_{1}, \ldots, \varphi_{k}$ be a partition of unity with $\operatorname{support}\left(\varphi_{i}\right) \subset U_{i}$ for each $i(2.14)$. Let f_{i} denote the equivalence of $E\left(\xi \mid U_{i}\right)$ onto $U_{i} \times \mathbb{R}^{n} ;$ let $f_{i}^{1}, \ldots, f_{i}^{n}$ denote the coordinate functions of its projection into \mathbb{R}^{m}.
We define $h: E(\xi) \rightarrow B \times \mathbb{R}^{m k}$ as follows:

$$
h(e)=\left(\pi(\mathrm{e}),\left(\varphi_{i} \pi(e)\right) \cdot f_{i}^{j}(e)\right) \quad i=1, \ldots, k ; \quad j=1, \ldots, n
$$

(no summation indicated.) This is well-defined, since $\varphi_{i} \pi(e)=0$ unless $e \in E\left(\xi \mid U_{i}\right)$. It is clearly a homomorphism, since each f_{i}^{i} is linear on $E\left(\xi \mid U_{i}\right)$. To show that it is $1-1$, let $e \neq 0$. Then for some $i, \varphi_{i} \pi(e)>0$. Since f_{i} is an equivalence, $f_{i}(e) \neq 0$ for some j. Hence $h(e) \neq(\pi(\mathrm{e}), 0)$ as desired.
2.21. Definition. The bundle ξ is s-equivalent ${ }^{2}$ to η if there are trivial bundles o^{p}, o^{n} such that $\xi \oplus o^{p} \cong \eta \oplus o^{n}$.

Here $o^{p}=B \times \mathbb{R}^{p}$. Symmetry and reflexivity are clear. To show transitivity, assume $\xi \oplus o^{p} \cong \eta \oplus o^{q}$ and $\eta \oplus o^{r} \cong \zeta \oplus o^{s}$. Then $\xi \oplus o^{p} \oplus o^{r} \cong \zeta \oplus o^{s} \oplus o^{q}$.

Remark: s-equivalence differs from from equivalence. E.g., consider the two-sphere S^{2} in \mathbb{R}^{3}. Then $\tau^{2} \oplus v^{1} \cong o^{3}$. The normal bundle v^{1} is easily seen to be trivial; but it is a classical theorem of topology that τ^{2} is not (it does not admit a non-zero cross-section.) Hence τ^{2} is s-trivial, but not trivial.

[^1]2.22. Theorem. The set of s-equivalence classes of vector space bundles of finite type over B forms an abelian group under \oplus^{3}.

Proof: To avoid logical difficulties, we consider only subbundles of $B \times \mathbb{R}^{m}$, for all m. This suffices, since any bundle of finite type may be embedded in some $B \times \mathbb{R}^{m}$, by 2.20. The class o^{p} of trivial bundles is the identity element. The existence of inverses is the substance of 2.20 .
2.23. Corollary. Given two immersions of the differentiable manifold M in euclidean space, their normal bundles are s-equivalent.
2.24. Definition. M^{n} is a $\boldsymbol{\pi}$-manifold if M may be embedded in some \mathbb{R}^{n+p} so that its normal bundle is trivial.

This is equivalent to the requirement that τ^{n} be s-trivial; Let τ^{n} be s-trivial. If we take some immersion of M into \mathbb{R}^{n+p}, then $\tau^{n} \oplus v^{p}$ is trivial by 2.16 , so that v^{p} is s-trivial, i.e., $v^{p} \oplus o^{q}=o^{p+q}$ for some q. Consider the composite immersion $M \rightarrow \mathbb{R}^{n+p} \subset \mathbb{R}^{n+p+q}$. The normal bundle of M in \mathbb{R}^{n+p+q} is just $v^{p} \oplus o^{q}$, which is trivial.
Conversely, if v^{p} is trivial for some immersion, then τ^{n} is s-trivial because $\tau^{n} \oplus v^{p}$ is trivial.
2.25. Definition. Let $G_{p, n}$ denote the set of all n-dimensional vector subspaces of \mathbb{R}^{n+p} (i.e., all n dimensional hyperplanes through the origin.) It is called the Grassman manifold of n-planes in $n+p$ space.
Its topology is obtained as follows; Consider $\mathcal{M}(n, n+p ; n)$; we identify two elementss of this set if the hyperplane spanned by their row vectors are the same. $G_{p, n}$ is in 1-1 correspondence with this identification space, and is given the identification topology. Let ρ be the projection

$$
\rho: \mathcal{M}(n, n+p ; n) \rightarrow G_{p, n} .
$$

Now $\rho(A)=\rho(B)$ if and only if $A=C B$ for some non-singular $n \times n$ matrix C : The hyperplane $\rho(A)$ consists of all points $\left(x^{1}, \ldots, x^{n+p}\right) \mathbb{R}^{n+p}$ which equal $\left(c^{1}, \ldots, c^{n}\right) \cdot A$ for some choice of constants c^{i}. If $\rho(A)=\rho(B)$, then

$$
\begin{aligned}
(1,0, \ldots, 0) \cdot A & =\left(c^{1}, \ldots, c^{n}\right) \cdot B \\
(0,1, \ldots, 0) \cdot A & =\left(c^{1}{ }_{2}, \ldots, c^{n}{ }_{2}\right) \cdot B \\
& =\quad \ldots \\
(0,0, \ldots, 1) \cdot A & =\left(c^{1}{ }_{n}, \ldots, c^{n}{ }_{n}\right) \cdot B
\end{aligned}
$$

for some choice of c_{i}^{j}. Then $I A=C B$, where C has rank n because A does. The converse is clear.
(a) $G_{p, n}$ is locally euclidean. Let $A \in \mathcal{M}(n, n+p ; n)$; after permuting the columns, we may assume $A=(P, Q)$ where P is $n \times n$ and non-singular. Let U be the set of all such A; it is an open set in $\mathcal{M}(n, n+p ; n)$, being the inverse image of the non-zero reals under the continuous map
$(P, Q) \rightarrow \operatorname{det} P$. If $\rho(P, Q)=\rho(R, S)$, where P is non-singular, then $(P, Q)=(C R, C S)$ for some nonsingular C. Hence R is necessarily non-singular; it follows that $\rho^{-1}(\rho(U))=U$, so that $\rho(U)$ is open in $G_{p, n}$ (by definition of the identification topology.)
We show $\rho(U)$ homeomorphic with $\mathbb{R}^{p n}$. Define $\varphi: U \rightarrow \mathbb{R}^{p n}$ by $\varphi(P, Q)=P^{-1} Q$. If $\rho(P, Q)=\rho(R, S)$

[^2]then $(P, Q)=(C R, C S)$, so that
$$
P^{-1} Q=(C R)^{-1}(C S)=R^{-1} S
$$

Hence φ induces a continuous map $\varphi_{0}: \rho(U) \rightarrow \mathbb{R}^{p n}$. Define $\psi: \mathbb{R}^{p n} \rightarrow \rho(U)$ by $\psi(Q)=\rho(I, Q)$ where Q is an $n \times p$ matrix. One checks immediately that ψ and φ_{0} are inverse of each other.

(b) To show that $G_{p, n}$ is Hausdorff, we show that maps every compact set into a closed set (this will clearly suffice.) Let K be a compact subset of $\mathbb{R}^{p n}$; we show $\varphi^{-1}(K)$ is closed in $\mathcal{M}(n, n+p ; n)$. $\varphi^{-1}(K)$ consists of all matrices (P, Q) with P non-singular and $P^{-1} Q \in K$. Let $(P, Q) \in \mathcal{M}(n, n+p ; n)$ be the limit of the sequence $\left\{\left(P_{i}, Q_{i}\right)\right\}$ of elements of $\varphi^{-1}(K)$. Since K is compact, some subsequence of the sequence $\left\{\varphi\left(P_{i}, Q_{i}\right)\right\}=\left\{P_{i}^{-1} Q_{i}\right\}$ converges to a point R of K. Then the corresponding subsequence of the sequence $\left\{Q_{i}\right\}$ converges to $P R$, so that $\mathrm{C}=P(I, R)$. Since (P, Q) has rank n it follows that P is non-singular, so that $(P, Q) \in \varphi^{-1}(K)$, as desired.
Hence $G_{p, n}$ is a manifold of dimension $p n$.
(c) $G_{p, n}$ is a differentiable manifold and ρ is a differentiable map. A function f on the open set V in $G_{p, n}$ belongs to the differentiable structure \mathcal{D} if $f \rho$ is differentiable. To show that this satisfies the condition for a differentiable structure, we show that $\left(\rho(U), \varphi_{0}\right)$, as defined in (a), is a coordinate system. Let f be defined on $V \subset \rho(U)$. Given $Q \in \mathbb{R}^{p n}, f \varphi_{0}{ }^{-1}(Q)=f \rho(I, Q)$ so that $f \varphi_{0}{ }^{-1}$ is differentiable if $f \rho$ is. Conversely, given $(P, Q) \in V, f \rho(P, Q)=f \varphi_{0}{ }^{-1} \varphi_{0} \rho(P, Q)=f \varphi_{0}{ }^{-1}\left(P^{-1} Q\right)$, so that $f \rho$ is differentiable if $f \varphi_{0}{ }^{-1}$ is.
(d) $G_{p, n}$ is compact. Let L be the subset of $\mathcal{M}(n, n+p ; n)$ consisting of matrices whose rows are orthonormal vectors. L is a closed and bounded subset of $\mathbb{R}^{n(n+p)}$. Since $\rho(L)=G_{p, n}$ (the GramSchmidt orthogonalisation process proves this), $G_{p, n}$ is compact.
(e) $G_{p, n}$ is diffeomorphic to $G_{n, p}$. Geometrically, the homeomorphism h is defined as carrying each hyperplane into its orthogonal complement. It is clearly $1-1$; to show it is differentiable we use the coordinate system $\left(\rho(U), \varphi_{0}\right)$ defined in (a). Let g map U into $\mathcal{M}(n, n+p ; n)$ by carrying (P, Q) into ($-\left(P^{-1} Q\right)^{\tau}, I_{P}$); it is differentiable (τ denotes transpose.) The row space of (P, Q) is the same as that of $\left(I_{n}, P^{-1} Q\right)$, while the row vectors of this matrix are orthogonal to those of $\left(-\left(P^{-1} Q\right)^{\tau}, I_{p}\right)$ (multiply the one by the transpose of the other.) Hence g induces $h \mid \rho(U)$, so that the latter is differentiable.
2.26. Definition. Let $E\left(\gamma_{p}{ }^{n}\right)$ be defined as that subsets of $G_{p, n} \times \mathbb{R}^{n+p}$ consisting of pairs (H, x) where x is a vector lying in the hyperplane H. It is called the universal bundle (for reasons we shall see.) The projection π maps (H, x) into H; the fibre is thus an n-dimensional subspace of \mathbb{R}^{n+p}.
$\gamma_{p}{ }^{n}$ is an n-dimensional vector space bundle over $G_{p, n}$. We need to show the existence of a local product structure. Let $\left(\rho(U), \varphi_{0}\right)$ be a coordinate neighbourhood on $G_{p, n}$, as in (a) above. We define $h: \rho(U) \times \mathbb{R}^{n} \rightarrow \pi^{-1} \rho(U)$ as carrying $\left(H,\left(x^{1}, \ldots, x^{n}\right)\right)$ into $\left(x^{1}, \ldots, x^{n}\right) \cdot\left(I_{n}, Q\right)$ where $Q=\varphi_{0}(H)$. This is a vector in the hyperplane $H ; h$ is clearly an isomorphism on each fibre. Its inverse is continuous, since it sends $\left(H,\left(y^{1}, \ldots, y^{n+p}\right)\right.$) in $G_{p, n} \times \mathbb{R}^{n+p}$ into $\left(H,\left(y^{1}, \ldots, y^{n}\right)\right)$ in $\rho(U) \times \mathbb{R}^{n}$.
2.27. Definition. ξ is a differentiable vector space bundle if $E(\xi)$ and $B(\xi)$ are differentiable manifolds, and if the homeomorphisms

$$
U \times \mathbb{R}^{n} \rightarrow \pi^{-1}(U)
$$

which specify the local product structure can be chosen as diffeomorphisms.
It follows that $\pi: E \rightarrow B$ is differentiable of maximum rank. Note that B can be differentiably embedded in E by mapping b into the 0 -vector of F_{b}. The normal bundle of this embedding is just ξ.
Examples of differentiable bundles include the tangent bundles of a manifold, the normal bundle of an immersed manifold, and the universal bundle $\gamma_{p}{ }^{n}$ above. In the latter case, $E\left(\gamma_{p}{ }^{n}\right)$ is embedded differentiably in $G_{p, n} \times \mathbb{R}^{n+p}$.
2.28. Theorem. Let ξ^{n} be an n-dimensional vector space bundle. The following conditions are equivalent:
(a) ξ is of finite type.
(b) There is a bundle η^{p} such that $\xi^{n} \oplus \eta^{p}$ is trivial.
(c) There is a bundle map $\xi^{n} \rightarrow \gamma_{p}^{n}$ for some p. (Thus the terminology "universal bundle" for $\gamma_{p}{ }^{n}$.)

Proof: We have already shown that $(\mathrm{a}) \Longrightarrow$ (b) (2.20); the bundle η^{p} there constructed has dimension $n(k-1)$, where k is the number of elements in the covering U_{1}, \ldots, U_{k} of $B(\xi)=B$ such that $\xi \mid U_{i}$ is trivial.
(b) \Longrightarrow (c): Condition (b) means that ξ^{n} may be embedded in the trivial bundle $B(\xi) \times \mathbb{R}^{n+p}$; let f be this embedding. We wish to define g and g_{B} in the following diagram:

Since f is a 1-1 homomorphism, $f\left(F_{b}\right)$ is the cartesian product of b and an n-dimensional hyperplane H^{n} in \mathbb{R}^{n+p}; let $g_{B}(b) \equiv H^{n}$. If $e \in F_{b}$, then $f(e)=(b, x)$ where x is a vector in the hyperplane H^{n}; let $g(e)=\left(H^{n}, x\right)$ in $G_{p, n} \times \mathbb{R}^{n+p}$. Then $g(e)$ actually lies in the subset of $G_{p, n} \times \mathbb{R}^{n+p}$ which constitutes $E\left(\gamma_{p}{ }^{n}\right)$. From rank considerations, g is automatically an isomorphism on each fibre.

It remains to show that g is continuous. Locally, g just looks like a map $U \times \mathbb{R}^{n} \rightarrow G_{p, n} \times \mathbb{R}^{n+p}$. We factor it into a continuous map $h: U \times \mathbb{R}^{n} \rightarrow \mathcal{M}(n, n+p ; n) \times \mathbb{R}^{n+p}$ followed by the projection $\rho \times 1$ into $G_{p, n} \times \mathbb{R}^{n+p}$. Locally, f looks like a map $U \times \mathbb{R}^{n} \rightarrow B \times \mathbb{R}^{n+p}$. Let e_{1}, \ldots, e_{n} be a basis for \mathbb{R}^{n}; we define $h(b, x)$ as $\left(A, p_{2} f(b, x)\right)$. Here p_{2} projects $B \times \mathbb{R}^{n+p}$ onto its second factor and A is the matrix having $p_{2} f\left(b, e_{1}\right), \ldots, p_{2} f\left(b, e_{n}\right)$ as its rows. Then h is continuous and $(\rho \times 1) h$ equals g. (Note: The converse assertion, (c) implies (b), can be proved by the same argument.)
$(\mathrm{c}) \Longrightarrow(\mathrm{a})$: Being compact, $G_{p, n}$ is covered by a finitely many neighbourhoods U_{i} with $\gamma_{p}{ }^{n} \mid U_{i}$ trivial. (In fact, $(n+p)!/ n!p!$ neighbourhoods will suffice.) If f is a bundle map $\xi^{n} \rightarrow \gamma_{p}^{n}$ then the sets $\left\{f_{B}^{-1}\left(U_{i}\right)=V_{i}\right\}$ cover B, and $\xi \mid V_{i}$ is equivalent to the bundle induced by $f_{B}: V_{i} \rightarrow G_{p, n}$ (the uniqueness part of 2.8.) Then $\xi \mid V_{i}$ is trivial (since it is induced from a trivial bundle.)

Chapter III The Cobordism Theory of Thom

3.1. Definition. An n-manifold with boundary Q is a Hausdorff space with a countable basis which is locally homeomorphic with \mathbb{H}^{n} (the subset of \mathbb{R}^{n} such that $x^{1} \geq 0$.) The boundary ∂Q is that subset of corresponding to \mathbb{R}^{n-1} under the local homeomorphism (\mathbb{R}^{n-1} being the subset of \mathbb{R}^{n} with $x^{1}=0$.) ∂Q is well-defined, since the image of an open set in \mathbb{R}^{n} under a homeomorphism of it into \mathbb{R}^{n} must be open (Brouwer theorem on invariance of domain.) It is clear that ∂Q is an ($n-1$)manifold.
A differential structure \mathcal{D} on Q is a collection of real-valued functions f defined on open subsets of Q such that

1) Every point of Q has an open neighbourhood U and a homeomorphism h of U into an open subset of \mathbb{H}^{n}, such that f is in \mathcal{D} if and only if $f h^{-1}$ is differentiable. (f is defined on an open subset of $U ; \mathrm{fh}^{-1}$ differentiable means that it may be extended to a neighbourhood of $h(U)$ in \mathbb{R}^{n} so as to be differentiable.)
2) If U_{i} are open sets contained in the domain of f and $U=\cup U_{i}$, then $f \mid U \in \mathcal{D}$ if and only if $f \mid U_{i} \in \mathcal{D}$ for each i.

As before, (U, h) is called a coordinate system on Q, and one can define differentiable structure alternatively by means of coordinate systems.

We impose an additional condition on \mathcal{D} in 3.2.
3.2. Definition. Let M_{1}, M_{2} be compact differentiable n-manifolds. They are said to be in the same cobordism class $\left(M_{1} \sim M_{2}\right)$ if there is a compact differentiable $n+1$ manifold-with-boundary Q such that ∂Q is diffeomorphic with the disjoint union of M_{1} and M_{2} (denoted by $M_{1}+M_{2}$.)

Symmetry and reflexivity of this relation are clear. To show transitivity, we impose the additional condition on \mathcal{D} that there is a neighbourhood U of ∂Q in Q which is diffeomorphic with $\partial Q \times[0,1)$, the diffeomorphism being the identity on $\partial Q \times 0$. This is redundant, but we assume it to avoid proving it ${ }^{4}$. Transitivity follows:
Let $M_{1}+M_{2}$ be diffeomorphic with ∂Q_{1} and $M_{2}+M_{3}$ be diffeomorphic with ∂Q_{2}; let h_{1}, h_{2} be the diffeomorphisms. We form a new space Q_{3} from $Q_{1} \cup Q_{2}$ by identifying each point of $h_{1}\left(M_{2}\right)$ with its image under $h_{2} h_{1}^{-1}$. There is then a homeomorphism of $M_{2} \times(-1,1)$ into this space which equals h_{1} when restricted to $M_{2} \times 0$, and is a diffeomorphism of $M_{2} \times\left[0,(-1)^{i}\right)$ into Q_{i} for $i=1,2$. (It is derived from the postulated "product neighbourhoods" $\partial Q_{i} \times[0,1)$.) If this is taken to be a coordinate system on Q_{3}, Q_{3} becomes a differentiable manifold-with-boundary, and $M_{1}+M_{3}$ is diffeomorphic with ∂Q_{3}. Q_{1} and Q_{2} diffeomorphic with subsets of Q_{3}.
3.3. Definition. As usual, there are logical difficulties involved in considering these cobordism classes. One way of avoiding them is to consider only manifolds-with-boundary embedded in some euclidean space \mathbb{R}^{n} : If Q_{1} is a differentiable manifold-with-boundary and $Q_{2}=\partial Q_{1} \times[0,1)$, then the space Q_{3} constructed in the preceding paragraph is a differentiable manifold, so that it may be embedded in some euclidean space. Hence Q_{1} may so be embedded.
With these restrictions, the set of cobordism classes of n-manifolds forms an abelian group (denoted

[^3]by $\mathcal{N}^{\prime \prime}$) under the operation + (disjoint union.) If $M_{1} \sim M_{1}^{\prime}$ and $M_{2} \sim M_{2}^{\prime}$, this means that $M_{i}+M_{i}^{\prime}$ is diffeomorphic with ∂Q_{i}. Then $\left(M_{1}+M_{2}\right)+\left(M_{1}^{\prime}+M_{2}^{\prime}\right)$ is diffeomorphic with $\partial\left(Q_{1} \cup Q_{2}\right)$, so that $M_{1}+M_{2} \sim M_{1}^{\prime}+M_{2}^{\prime}$ and the operation + is well-defined on cobordism classes. The zero element is the vacuous manifold or the n-sphere (or ∂Q, where Q is any compact differentiable $(n+1)$ -manifold-with-boundary.) The remaining axioms are clear. Note that $M+M$ is diffeomorphic with $\partial(M \times[0,1])$, so that every element is of order 2.

The groups \mathcal{N}^{n} are called the (non-orientable) cobordism groups. Let \mathcal{N} denote the direct sum $\mathcal{N}^{0} \oplus \mathcal{N}^{1} \oplus \mathcal{N}^{2} \oplus \cdots$. There is a bilinear symmetric pairing of $\mathcal{N}^{i}, \mathcal{N}^{j}$ into \mathcal{N}^{i+j}, i.e., a homomorphism of $\mathcal{N}^{i} \otimes \mathcal{N}^{j}$ into \mathcal{N}^{i+j} induced by the operation of cartesian product.
First, $\left(M_{1}+M_{2}\right) \times M_{3}=\left(M_{1} \times M_{3}\right)+\left(M_{2} \times M_{3}\right)$ by definition of cartesian product. Second, if $M_{1} \sim 0$, i.e., $M_{1}=\partial Q$, then $M_{1}+M_{2}$ is diffeomorphic with $\partial\left(Q \times M_{2}\right)$, so that $M_{1}+M_{2} \sim 0$.

Since $M_{1}+M_{2} \sim M_{2}+M_{1}$, and since $M_{1} \times p \sim M_{1}$ (where p is a point-manifold), this pairing makes \mathcal{N} into a (graded) commutative ring with unit. Indeed, it is a graded algebra over the field $\mathbb{Z} / 2 \mathbb{Z}$.
3.4. Remark. The general result of Thom is the following

Theorem. \mathcal{N} is a polynomial algebra over $\mathbb{Z} / 2 \mathbb{Z}$ with one generator in each positive dimension except those of the form $2^{m}-1$. If n is even, projective n-space is a generator.
This theorem means that there are compact manifolds $M^{2}, M^{4}, M^{\top}, \ldots$ such that every compact manifold is in the cobordism class of a disjoint union of products of these manifolds, and that there are no relations among the generators (except commutativity and associativity of products.) Thom's procedure is to show that \mathcal{N}^{n} is isomorphic with the $(n+k)^{\text {th }}$ homotopy group of a certain space T_{k}, and then to compute these homotopy groups. We shall consider only the first of these two problems in the present notes.
3.5. Definition. Let h be an embedding of the differentiable manifold M^{n} in \mathbb{R}^{n+k}; consider the normal bundle of this embedding. Using the standard Riemannian metric for the tangent bundle to \mathbb{R}^{n+k}, this normal bundle is equivalent to the orthogonal complement of the image in the tangent bundle of \mathbb{R}^{n+k} of the tangent bundle of $M^{n}(2.16)$; this complement we denote by ν^{k}. Define e as the canonical map of $E\left(v^{k}\right)$ into \mathbb{R}^{n+k} which maps the vector v normal to at x into its end point. (Described differently, one maps the tangent bundle to \mathbb{R}^{n+k} into itself canonically by mapping the vector v, based at x, into the point $v+x$ of \mathbb{R}^{n+k}. This map is differentiable; its restriction to $E\left(v^{k}\right)$ is the map e.)
Consider M^{n} as the zero vectors of $E\left(v^{k}\right)$. Then we have the
3.6. Theorem. There is a neighbourhood of M^{n} in $E\left(v^{k}\right)$ which is mapped diffeomorphically onto a neighbourhood of M^{n} in \mathbb{R}^{n+k}.

Proof: Note that e is differentiable, and that it has rank $n+k$ at points of $M^{n} \subset E\left(v^{k}\right)$. (This is easily checked by computing the derivative matrix of e with respect to a local coordinate system.) Hence e has rank $n+k$ in some neighbourhood of M^{n} in $E\left(v^{k}\right)$, so that it is a local homeomorphism at points of M^{n} : It maps a neighbourhood of each $x \in M^{n}$ homeomorphically onto a neighbourhood of $e(x)$. We then appeal to the topological
Lemma. Let X, Y be Hausdorff spaces with countable bases and X be locally compact. Iff $: X \rightarrow Y$ is a local homeomorphism and the restriction off to the closed subset A is a homeomorphism, then f is a homeomorphism on some neighbourhood V of A.

This lemma is proved as follows:

1) If A is compact, the lemma holds. For otherwise, there would be points x, y arbitrarily close to A such that $f(x)=f(y)$. Since A has a compact neighbourhood, we may choose sequences $\left\{x_{n}\right\}$, $\left\{y_{n}\right\}$ converging to x, y respectively, in A such that $x_{n} \neq y_{n}$ and $f\left(x_{n}\right)=f\left(y_{n}\right)$. Hence $f(x)=f(y)$ so that $x=y, f$ being a homeomorphism on A. But then f is not a local homeomorphism at x.
2) Let A_{0} be a compact subset of A. Then there is a neighbourhood U_{0} of A_{0} such that \bar{U}_{0} is compact and f is a homeomorphism on $\bar{U}_{0} \cup A_{0}$: It will suffice for f to be $1-1$, since f is a local homeomorphism. By (1), let V_{0} be a neighbourhood of A_{0} so that is $f \mid \bar{V}_{0} 1-1$. If no neighbourhood of A_{0} in V_{0} satisfies the requirement for U_{0}, there is a sequence $\left\{x_{n}\right\}$ of $X \backslash A$ converging to $x \in A_{0}$ with $f\left(x_{n}\right) \in f(A)$. Choose $y_{n} \in A$ with $f\left(x_{n}\right)=f\left(y_{n}\right)$. Since f is continuous, $\left\{f\left(y_{n}\right)\right\}$ converges to $f(x)$; since f is a homeomorphism on $A,\left\{y_{n}\right\}$ converges to x. Since $x_{n} \neq y_{n}$, this contradicts the fact that f is a local homeomorphism at x.
3) Express A as the union of an ascending sequence of compact sets $A_{1} \subset A_{2} \subset \cdots$. Let V_{1} be a neighbourhood of A_{1} such that \bar{V}_{1} is compact and f is a homeomorphism on $\bar{V}_{1} \cup A$ (by (2).) Given V_{i} a neighbourhood of A_{i} satisfying these conditions, consider the set $\bar{V}_{i} \cup A_{i+1}$. It is a compact subset of $\bar{V}_{i} \cup A$, and f is a homeomorphism on $\bar{V}_{i} \cup A$. Hence by (2) there is a neighbourhood V_{i+1} of $\bar{V}_{i} \cup A_{i+1}$ with \bar{V}_{i+1} compact, such that f is a homeomorphism on $\bar{V}_{i} \cup A_{i+1}$. We proceed by induction: f is $1-1$ on $V=\cup V_{i+1}$, so that it is a homeomorphism on V (being a local homeomorhism-onto.)
3.7. Corollary. Any differentiable submanifold of \mathbb{R}^{n+k} is a differentiable neighbourhood retract.

Proof: The projection of $E\left(v^{k}\right) \rightarrow M^{n}$ induces (under e) a differentiable map of a neighbourhood of M^{n} in \mathbb{R}^{n+k} onto M^{n} which is the identity on M^{n}.
3.8. Definition. Let ξ be a vector space bundle with $B(\xi)$ compact; Let $T(\xi)$ denote the 1-point compactification of $E(\xi)$. It is called the Thom space of ξ. Let ∞ denote the added point.

Let ξ have a Riemannian metric. Let $T_{\varepsilon}(\xi)$ be obtained from $E(\xi)$ by identifying all vectors of length greater than or equal to ε to a point. Let $\alpha(x)$ be a C^{∞} function with $\alpha^{\prime}(x) \geq 0$ which equals 1 in a neighbourhood of $x=0$ and $\rightarrow \infty$ as $x \rightarrow 1$. The map of $E(\xi)$ into $T(\xi)$ which carries the vector e into the vector $e \alpha(\|e\| / \varepsilon)$ induces a homeomorphism of $T_{\varepsilon}(\xi)$ onto $T(\xi)$ which is a diffeomorphism on the set $E_{\varepsilon}(\xi)$, consisting of vectors of length less than ε. The fact that B is compact is used here.
3.9. Definition. Let the compact manifold M^{n} be embedded in \mathbb{R}^{n+k}. v^{k} is given the Riemannian metric of \mathbb{R}^{n+k}; by 3.6 there is a neighbourhood of M^{n} in \mathbb{R}^{n+k} which is diffeomorphic to the subset $E_{2 \varepsilon}\left(v^{k}\right)$ of $E\left(v^{k}\right)$. Such a neighbourhood is called a tubular neighbourhood of M^{n}.
By 3.8, we see that $T\left(v^{k}\right)$ is homeomorphic with the space obtained from \mathbb{R}^{n+k} by collapsing the exterior of the ε-neighbourhood of M^{n} to a point.
We will need three lemmas concerning approximation by differentiable functions.
3.10. Lemma. Let A be a closed subset of the differentiable manifold M^{n}, let $f: M^{n} \rightarrow \mathbb{R}^{m}$ be differentiable on A. Let δ be a positive continuous function on M^{n}. There exists $g: M^{n} \rightarrow \mathbb{R}^{m}$ such that

1) g is differentiable,
2) g is a δ-approximation to f,
3) $g|A=f| A$.

Proof: It suffices to prove this lemma in the case $m=1$.
Given $x \in A, f \mid A$ may be extended to a differentiable function f_{x} in a neighbourhood N_{x} of x. Let N_{x} be chosen small enough that $\left|f_{x}(y)-f(y)\right|<\delta(y)$ for all $y \in N_{x}$.
Given $x \in M^{n} \backslash A$, choose a neighbourhood N_{x} of x small enough that $|f(y)-f(x)|<\delta(y)$ for all $y \in N_{x}$. Define $f_{x}(y) \equiv f(x)$ for $y \in N_{x}$.
Let $\left\{\varphi_{a}\right\}$ be a differentiable partition of unity with $\operatorname{support}\left(\varphi_{\alpha}\right)$ contained in some N_{x}, say $N_{x(\alpha)}$, for each α. Define $g(y)=\sum_{\alpha} \varphi_{\alpha}(y) f_{x(\alpha)}(y)$. One checks the conditions of the lemma easily.

More generally:
3.11. Lemma. Let $f: M_{1} \rightarrow M_{2}$ be a continuous map of differentiable manifolds which is differentiable on the closed subset A of M_{1}. Let $\varepsilon(x)>0$ be given; and give M_{2} the metric determined by some embedding $M_{2} \subset \mathbb{R}^{p}$. Then there exists a differentiable map $g: M_{1} \rightarrow M_{2}$ such that

1) g is differentiable,
2) g is an ε-approximation to f,
3) $g|A=f| A$.

Proof: There is a neighbourhood U of M_{2} in \mathbb{R}^{p} of which is a differentiable retract (3.7.) Let ρ be the differentiable retraction of U onto M_{2}. Let $\delta(x)$ be a positive function on M_{2} so chosen that the cubical neighbourhood of $f(x)$ of radius $\delta(x)$ lies in U, and so that its image under ρ has radius less than $\varepsilon(x)$. Let $f_{1}: M_{1} \rightarrow \mathbb{R}^{p}$ be a differentiable map which is a δ-approximation to f, such that $f_{1}|A=f| A$ (by 3.10.) Define $g(x)=\rho\left(f_{1}(x)\right)$.
3.12. Lemma. Let $f: M_{1} \rightarrow M_{2}$ be a continuous map of differentiable manifolds; let the metric on M_{2} be obtained by embedding it in some euclidean space. Given $\varepsilon(x)$, there is a $\delta(x)$ such that if $g: M_{1} \rightarrow M_{2}$ is a δ-approximation to f, g is homotopic to f under a homotopy $F(x, t)$ with

1) $F(x, t)=f(x)$ for any x such that $g(x)=f(x)$ and
2) $F(x, t)$ is a an ε-approximation to for any t.

Proof: Let U, ρ, and $\delta(x)$ be chosen as in 3.11. Let $g: M_{1} \rightarrow M_{2}$ be a δ-approximation to f. Then the line segment from $g(x)$ to $f(x)$ lies in U, so that

$$
F(x, t)=\rho(\operatorname{tg}(x)+(1-t) f(x))
$$

is well defined. Furthermore $F(x, t)$ is an ε-approximation to $f(x)$ for any t.
3.13. Definition. We wish to define a homomorphism $\lambda: \pi_{n+k}\left(T\left(\xi^{\mu}\right), \infty\right) \rightarrow \mathcal{N}^{n}$ where \mathcal{N}^{n} is the cobordism class of the base space for $T\left(\xi^{k}\right)$. To this end we need some preparation:
Let ξ^{k} be a differentiable vector space bundle with $B(\xi)$ compact and m-dimensional; let $E\left(\xi^{k}\right)$ be given a metric by embedding it as a closed differentiable submanifold in some euclidean space (it is an $(m+k)$-manifold.)
Given an element of $\pi_{n+k}\left(T\left(\xi^{k}\right), \infty\right)$, let it be represented by the map

$$
f:\left(\bar{C}_{n+k}, \partial \bar{C}_{n+k}\right) \rightarrow\left(T\left(\xi^{k}\right), \infty\right),
$$

where \bar{C}_{n+k} is the closed cube $[0,1]^{n+k}$ and $\partial \bar{C}_{n+k}$ is the boundary. Let U denote the open subset
$f^{1}\left(E\left(\xi^{k}\right)\right)$ of C_{n+k}. Let $g: U \rightarrow E\left(\xi^{k}\right)$ be a differentiable δ-approximation to $f \mid U$, where δ is so chosen that $\delta<1$ and g is homotopic to f, the homotopy F also being a 1 -approximation to f. (This ensures that F will be continuous if we define $F(x, t)=\infty$ for $x \in \bar{C}_{n+k} \backslash U$.)
Now g may be approximated in turn by a differentiable map $h: U \rightarrow E\left(\xi^{\xi}\right)$ which is transverse regular on the submanifold $B\left(\xi^{k}\right)$ of $E\left(\xi^{k}\right)$. We choose the approximation close enough to h, the homotopy H being a 1-approximation to g for each t. Extend h to \bar{C}_{n+k} by defining $h(x)=\infty$ for $x \in \bar{C}_{n+k} \backslash U$. Then h is in the homotopy class of f.
$h^{-1}\left(B\left(\xi^{k}\right)\right)$ is a differentiable submanifold M^{n} of U which is closed in \bar{C}_{n+k}, and thus compact.
3.14. Theorem. Define $\lambda: \pi_{n+k}\left(T\left(\xi^{k}\right), \infty\right) \rightarrow \mathcal{N}^{n}$ by assigning the cobordism class $\left[M^{n}\right] \in \mathcal{N}^{n}$ to the homotopy class $[h] \in \pi_{n+k}\left(T\left(\xi^{k}\right), \infty\right)$. Then λ is a well-defined homomorphism.
Proof: Let $H:\left(\bar{C}_{n+k} \times I, \partial \bar{C}_{n+k} \times I\right) \rightarrow\left(T\left(\xi^{k}\right), \infty\right)$ be a homotopy between $h_{0}=H(x, 0)$ and $h_{1}=H(x, 1)$. Let h_{0}, h_{1} satisfy the conditions

1) h_{i} is differentiable on $h_{i}^{-1}\left(E\left(\xi^{k}\right)\right)$
2) h_{i} is transverse regular on $B\left(\xi^{k}\right)$. $(i=0,1$.

We wish to show that $h_{0}{ }^{-1}(B)$ and $h_{1}^{-1}(B)$ belong to the same cobordism class.
We may assume that $H(x, t)=H(x, 0)$ for $t \leq 1 / 3$, and $H(x, t)=H(x, 1)$ for $t \geq 2 / 3$. Let $U=H^{-1}\left(E\left(\xi^{k}\right)\right) \cap\left[\bar{C}_{n+k} \times(0,1)\right]$; then U is an open subset of \mathbb{R}^{n+k+1}. Let $G: U \rightarrow E\left(\xi^{k}\right)$ be a differentiable 1-approximation to H which equals H on the closed subset A, where $A=U \cap\left[\bar{C}_{n+k} \times(0,1 / 4] \cup[3 / 4,1)\right]$. (See 3.11. H is differentiable on A.)
Now G satisfies the transverse regularity condition for $B\left(\xi^{k}\right)$ at points in A (since h_{0} and h_{1} are transverse regular on $B\left(\xi^{\xi}\right)$) so that by 1.35 there is a differentiable map $F: U \rightarrow E\left(\xi^{k}\right)$ which equals G on A, is transverse regular on $B\left(\xi^{\xi}\right)$, and is a 1-approximation to G. Because F is a 2-
approximation to H, it remains continuous if we define $F(x, t)=\infty$ for $(x, t) \in\left(\bar{C}_{n+k} \times(0,1)\right) \backslash U$. Because F equals H on A, it remains continuous if we define $F(x, t)=H(x, t)$ for $t=0,1$. Hence $F^{-1}(B)$ is a compact subset of \bar{C}_{n+k}, being closed and bounded.
Because $F \mid U$ is transverse regular on $B,(F \mid U)^{-1}(B)$ is a differentiable $(n+1)$-submanifold of $\bar{C}_{n+k} \times(0,1)$. Then

$$
(F \mid U)^{-1}(B) \cap \bar{C}_{n+k} \times t=\begin{array}{ll}
h_{0}^{-1}(B) \times t & \text { for } t \in[0,1 / 4] \\
h_{1}^{-1}(B) \times t & \text { for } t \in[3 / 4,1]
\end{array}
$$

Hence $F^{-1}(B)$ is a differentiable manifold-with-boundary whose boundary is $h_{0}^{-1}(B)+h_{1}^{-1}(B)$. Thus λ is well-defined.
It is trivial to show λ is a homomorphism, because the sum in \mathcal{N}^{n} is derived from disjoint union of representative manifolds.
3.15. Theorem. If ξ^{k} is the universal bundle $\gamma_{m}{ }^{k}$ where $k \geq n+1, m \geq n$ then $\lambda: \pi_{n+k}\left(T\left(\xi^{k}\right), \infty\right) \rightarrow \mathcal{N}^{n}$ is onto.

Proof: Let M^{n} be a compact manifold; let $k \geq n+1$. Let M^{n} be embedded in C_{n+k} (1.32); let v^{k} be the normal bundle of this embedding. The Riemannian metric on $E\left(v^{k}\right)$ is that derived from the natural scalar product on the tangent bundle to \mathbb{R}^{n+k}, in which v^{k} is contained.
By 3.6, for small ε the subset of $E_{2 \varepsilon}\left(\nu^{k}\right)$ of $E\left(\nu^{k}\right)$ is diffeomorphic with a tubular neighbourhood of M^{n} in C_{n+k}; let U be the image of $E_{\varepsilon}\left(\nu^{k}\right)$.

Let p_{1} project \bar{C}_{n+k} onto the space obtained from \bar{C}_{n+k} by identifying $\bar{C}_{n+k} \backslash U$ to a point (denoted by $\bar{C}_{n+k} /\left(\bar{C}_{n+k} \backslash U\right)$).
Let p_{2} be the diffeomorphism of U onto $E_{\varepsilon}\left(v^{k}\right)$, followed by the map of $E\left(v^{k}\right)$ into $T_{\varepsilon}\left(v^{k}\right)$ which identifies all vectors of length $\geq \varepsilon$ (3.8.) p_{2} is then extended by mapping $\bar{C}_{n+k} \backslash U$ into ∞.
Let p_{3} be the homeomorphism of $T_{\varepsilon}\left(v^{k}\right)$ onto $T\left(v^{k}\right)$ constructed in 3.8. The composite map $p_{3} p_{2} p_{1}$ is a diffeomorphism of U onto $E\left(v^{k}\right)$.
Finally, let p_{4} be the bundle map of v^{k} into $\gamma_{m}{ }^{k}$ induced from the embedding of M^{n} in $\mathbb{R}^{n+k} \subset \mathbb{R}^{m+k}$.
Because both fibres have dimension k, this map satisfies the transverse regularity condition for $G_{k, m}$ at each point of M^{n}. Extend p_{4} in the obvious way to map $T\left(\nu^{k}\right)$ into $T\left(\gamma_{m}{ }^{k}\right)$.
Let $g=p_{4} p_{3} p_{2} p_{1}$. Then $g: \partial \bar{C} \rightarrow \infty$. Let $\mu\left(M^{n}\right)$ denote the homotopy class of g in $\pi_{n+k}\left(T\left(\xi^{k}\right), \infty\right)$. Now g is transverse regular on $G_{k, m}$ and $M^{n}=g^{-1}\left(G_{k, m}\right)$. By definition, the cobordism class of M^{n} is the image of $\mu\left(M^{n}\right)$ under λ, so that $\lambda \mu\left(M^{n}\right)=\left[M^{n}\right]$.
3.16. Theorem. If $\xi^{{ }^{k}}$ is the universal bundle $\gamma_{m}{ }^{k}$ where $k \geq n+2, m>n$ then λ is one-to-one.

Proof: Given an element of $\pi_{n+k}\left(T\left(\xi^{k}\right), \infty\right)$, we may suppose it represented by a map

$$
f:\left(\bar{C}_{n+k}, \partial \bar{C}_{n+k}\right) \rightarrow\left(T\left(\xi^{k}\right), \infty\right)
$$

which is differentiable on $f^{1}(E)$ and transverse regular on $G_{m, k}$ (by 3.13.) Let $M^{n}=f^{1}\left(G_{m, k}\right)$; we wish to show that if M^{n} is the boundary of an $(n+1)$-manifold-with-boundary Q, then f is homotopic to the constant map.
M^{n} is a submanifold of C_{n+k}; let its normal bundle be v^{k}. Let ε be chosen so that $E_{2 \varepsilon}\left(v^{k}\right)$ is diffeomorphic with the 2ε-neighbourhood of M^{n}; let U_{ε} be the image of the vectors of $E_{\varepsilon}\left(\nu^{k}\right)$. Impose a Riemannian metric on $\gamma_{m}{ }^{k}$; let δ be so chosen that $\|x\| \geq \varepsilon$ implies $\|f(x)\| \geq \delta$ for $x \in E\left(v^{k}\right)$.
Step 1. f is homotopic to a map f_{1} such that

1) f_{1} is differentiable on $f_{1}^{-1}(E)$ and transverse regular on $G_{m, k}$.
2) $f=f_{1}$ on $M^{n}=f^{1}\left(G_{m, k}\right)$.
3) f_{1} carries everything outside U_{ε} into ∞.

Define $F: E\left(\gamma_{m}{ }^{k}\right) \rightarrow T\left(\gamma_{n}{ }^{k}\right)$ by the equation $F(e, t)=e \alpha(t\|e\| / \delta)$, where α is the function defined in 3.8. Let $f_{1}(x)=F(f(x), 1)$.

Step 2. By the diffeomorphism of $U_{2 \varepsilon}$ with $E_{2 \varepsilon}, f_{1}$ induces a map \bar{f}_{1} of $\bar{E}_{\varepsilon}\left(\nu^{k}\right)$ into $T\left(\gamma_{n}^{k}\right)$ which carries $\partial\left(E_{\varepsilon}\right)$ into ∞. Any homotopy of \bar{f}_{1} which leaves $\partial\left(E_{\varepsilon}\right)$ at ∞ induces a homotopy of f_{1}.
Now \bar{f}_{1} is homotopic to a map \bar{f}_{2} such that

1) \bar{f}_{2} is differentiable on $\bar{f}_{2}^{-1}(E)$ and transverse regular on $G_{m, k}$.
2) $\bar{f}_{2}=\bar{f}_{1}$ on $M^{n}=f^{1}\left(G_{m, k}\right)$.
3) \bar{f}_{2} is locally a bundle map in some neighbourhood of M^{n}.

The homotopy leaves $\partial\left(E_{\varepsilon}\right)$ at ∞.
Consider $G: \bar{E}\left(\gamma_{m}{ }^{k}\right) \times I \rightarrow T\left(\gamma_{n}{ }^{k}\right)$ defined by the equation $G(e, t)=\bar{f}_{1}(t e) / t$. As $t \rightarrow 0, G(e, t)$ approaches a limit which is non-zero if $e \neq 0$ (since f_{1} is differentiable and transverse regular.) It is easily seen to be a bundle map. It will not suffice for our purpose, since it does not carry $\partial\left(E_{\varepsilon}\right) \times I$ into ∞. Choose $\delta>0$ so that $\|x\| \geq \varepsilon$ implies $\|G(x, t)\| \geq \delta$ for $x \in E\left(\nu^{l}\right), t \in I$, and define

$$
H(e, t)=[G(e, t)] \alpha(-\|G(e, t)\| / \delta) .
$$

If we set $\bar{f}_{2}=H(e, 0)$, then \bar{f}_{2} is a bundle map for $\|e\|$ small (since $\alpha(x)=1$ for x small.) The map $H(e, 1)=\bar{f}_{1}(e) \alpha\left(\left\|\bar{f}_{1}(e)\right\| / \delta\right)$ does not equal \bar{f}_{1}, but it is homotopic to \bar{f}_{1}, the homotopy leaving $\partial\left(E_{\varepsilon}\right)$ at ∞. The homotopy is defined by the equation

$$
K(e, t)=\bar{f}_{1}(e) \alpha\left(t| | \bar{f}_{1}(e) \| / \delta\right), \text { as in Step } 1 .
$$

Step 3. Let Q be the $n+1$ manifold-with-boundary such that $M^{n}=\partial Q$. Let h be a diffeomorphism of $M^{n} \times[0,1]$ into Q which carries $M^{n} \times 0$ onto ∂Q.
Define $h_{1}: Q \rightarrow C_{n+k} \times I$ as follows:
$h_{1}(x)=h(y, t)$ if $x=h(y, t)$ where $(y, t) \in\left(M^{n},[0,1 / 2]\right)$.
$h_{1}(x)=p$, where p is some fixed point interior to $C_{n+k} \times I \quad$ if $x \notin$ image h.
$h_{1}(x)=(1-\beta(t)) h(y, 1 / 2)+\beta(t) p$, where β is a C^{∞} function with $\beta^{\prime}(t) \geq 0, \beta(t)=0$ in a neighbourhood of $t=1 / 2$ and $\beta(t)=1$ in a neighbourhood of $t=1 \quad$ if $x=h(y, t)$ where $(y, t) \in\left(M^{n},[1 / 2,1]\right)$.
h_{1} is a differentiable map of $\operatorname{Int} Q$ into $\operatorname{Int}\left(C_{n+k} \times I\right)$; and h_{1} is a $1-1$ immersion in a neighbourhood of ∂Q. Since $\operatorname{dim}\left(C_{n+k} \times I\right)>2(n+1), h_{1}$ may be approximated by a $1-1$ immersion h_{2} which equals h_{1} in a neighbourhood of ∂Q (by 1.29.) It may be extended to an embedding of Q into $C_{n+k} \times I$. (Since Q is compact, a 1-1 immersion is automatically an embedding.) Let Q now be considered as this subset of $C_{n+k} \times I$.

Step 4. We have a map f_{2} of $\bar{C}_{n+k} \times 0$ into $T\left(\gamma_{n}^{k}\right)$ which is a bundle map when restricted to a small tubular neighbourhood of $M^{n} \times 0$ in $C_{n+k} \times 0$. We extend it to $\bar{C}_{n+k} \times[0, b)$ for b small in a trivial way. Suppose there exists a map g of the ε^{\prime}-neighbourhood N of Q in $C_{n+k} \times I$ into $T\left(\gamma_{n}{ }^{k}\right)$ which equals f_{2} in some neighbourhood of ∂Q in $C_{n+k} \times I$ and maps each point of $N \backslash Q$ into a non-zero vector in $E\left(\gamma_{n}{ }^{k}\right)$. Our theorem then follows: Let δ be so chosen that, if the distance $(x, Q) \geq \varepsilon^{\prime} / 2$, then $\|g(x)\| \geq \delta$.
Define $g_{1}: C_{n+k} \times I \rightarrow T\left(\gamma_{n}^{k}\right)$ by the equation

$$
g_{1}(x, s)=\begin{aligned}
& g(x, \varepsilon) \alpha(\|g(x, s)\| / \delta) \quad \text { for }(x, s) \in N \text {, and } \\
& \infty \quad \text { otherwise } .
\end{aligned}
$$

The restriction of g_{1} to $C_{n+k} \times 0$ does not equal the map f_{2}, but it is homotopic to f_{2}, by the same technique as used at the end of Step 2. g_{1} is the homotopy required for our theorem.
To show that the extension g exists, we refer to Steenrod, "Fibre Bundles" (Princeton University Press, 1951.) According to $\S 19.4$ and $\S 19.7$ of this book, the principal bundle associated with $\gamma_{n}{ }^{k}$ is an m-universal bundle. That is: given a vector space bundle ξ^{k} over a complex of dimension $\leq m$, any bundle map of ξ^{ξ}, restricted to a subcomplex, into $\gamma_{n}{ }^{k}$ can be extended throughout ξ^{k}. We will assume the well known result that Q can be triangulated. The dimension $n+1$ of Q is $\leq m$. Hence any bundle map of the normal bundle v^{k} of Q, restricted to a polyhedral neighbourhood of ∂Q, into $\gamma_{n}{ }^{k}$ can be extended throughout v^{k}.
Applying this result to the map f_{2}, this completes the proof of 3.16.
Letting T_{k} stand for the union of the Thom spaces $T\left(\gamma_{n}{ }^{k}\right) \subset T\left(\gamma_{n+1}{ }^{k}\right) \subset \cdots$, in the weak topology, Theorem 3.15 and 3.16 imply the following.
3.17. Theorem. The cobordism group \mathcal{N}^{n} is canonically isomorphic to the stable homotopy group $\pi_{n+k}\left(T_{k}\right)$, for $k \geq n+2$.

References

Morse, A. P.: The behavior of a function on its critical set, Annals of Mathematics Volume 40 (1939), 62-70.

Sard, A.: \quad The measure of the critical values of differentiable maps, Bulletin of the American Mathematical Society Volume 48 (1942), 883-890.

Thom, R.: Quelques propriétés globales des variétés différentiables, Commentarii Mathematici Helvetici Volume 28 (1954), 17-86.

Whitney, H.: A function not constant on a connected critical set of points, Duke Mathematical Journal, Volume 1 (1935), 514-517.
--------------: Differentiable manifolds, Annals of Mathematics 37 (1936), 645-680.
--------------: The self-intersections of a smooth n-manifold in $2 n$-space, Annals of Mathematics Volume 45 (1944), 220-246.
--------------: The singularities of a smooth n-manifold in $(2 n-1)$ space, Annals of Mathematics Volume 45 (1944), 247-293.

Appendix ${ }^{5}$

In this appendix we give a proof for the smooth collaring theorem. Our exposition follows Dirk Schütz. (See "Lecture06_handout.pdf" in the "material" for MAGIC002, in "courses" listed in the page "http://maths.dept.shef.ac.uk/magic/courses.php".)

First we show that partitions of unity allow us to glue together smooth functions which are only defined on subsets of a differentiable manifold M.

Proposition A: Let $\left\{U_{\alpha}\right\}$ be an open cover of the differentiable manifold M and $\left\{\varphi_{a}\right\}$ a partition of unity with support $\left(\varphi_{\alpha}\right) \subset U_{\alpha}$. For every α, assume that $f_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{k}$ is a smooth function. Then $f: M \rightarrow \mathbb{R}^{k}$ defined by

$$
f(x)=\sum_{\alpha} f_{a}(x) \varphi_{a}(x)
$$

is a well defined smooth function.
Proof: Observe that $f_{\alpha} \cdot \varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{k}$ has support contained in support $\left(\varphi_{\alpha}\right)$, so can be extended to a smooth function on M. Also, by the local finiteness, the formula for f is locally just a finite sum, so smoothness follows.

The same procedure can be used to extend vector fields defined on each V_{i} to a vector field on M.
Proposition B (Smooth Collaring Theorem): Let M be a compact differentiable manifold with boundary. Then there exists an embedding $i: \partial M \times[0,1) \rightarrow M$ with $i(x, 0)=x$ for all $x \in \partial M$.

Proof: Let U_{1}, \ldots, U_{k} be a finite covering of M by coordinate charts, and let $\left\{\varphi_{i}: U_{i} \rightarrow[0,1]\right\}$ be a partition of unity subordinate to this cover.
Case I: U_{i} is diffeomorphic to an open set of \mathbb{R}^{n}. Define a vector field v_{i} on U_{i} to be identically zero.
Case II: U_{i} contains boundary points. Let $\varphi_{i}: U_{i} \rightarrow U_{i}^{\prime}$ be a chart, and define a vector field v_{i} on U_{i} such that the induced vector field on $U_{i}^{\prime} \subset \mathbb{H}^{n}$ is constant $e_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{n}$.
We get a vector field on M by using the partition of unity. Let Φ be the corresponding flow. As M is compact, and since the vector field is chosen on the boundary so that it is not possible to flow "out" of the manifold, we get a smooth flow

$$
\Phi: M \times[0, \infty) \rightarrow M
$$

It is easy to check that $\Phi \mid \partial M \times[0,1)$ is the desired embedding.

[^4]
[^0]: 1 See Appendix, Proposition A.

[^1]: 2 Short for "stably equivalent".

[^2]: 3 The resulting abelian group is called the K-group of B. For more on this, see "Vector Bundles and K-Theory" by Allen Hatcher in his homepage http://www.math.cornell.edu/~hatcher/\#ATI.

[^3]: 4 This fact is called the smooth collaring theorem. See Appendix, Proposition B for a proof.

[^4]: 5 Added by the transcriber.

