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Differential Topology

Lectures by John Milnor, Princeton University, Fall term 1958

Notes by James Munkres

Differential topology may be defined as the study of those properties of differentiable manifolds 
which are invariant under diffeomorphism (differentiable homeomorphism).  Typical problem 
falling under this heading are the following:

1) Given two differentiable manifolds, under what conditions are they diffeomorphic?
2) Given a differentiable manifold, is it the boundary of some differentiable manifold-with-

boundary?
3) Given a differentiable manifold, is it parallelisable?

All these problems concern more than the topology of the manifold, yet they do not belong to 
differential geometry, which usually assumes additional structure (e.g., a connection or a metric).

The most powerful tools in this subject have been derived from the methods of algebraic topology. 
In particular, the theory of characteristic classes is crucial, where-by one passes from the manifold 
M to its tangent bundle, and thence to a cohomology class in M which depends on this bundle.

These notes are intended as an introduction to the subject;  we will go as far as possible without 
bringing in algebraic topology.  Our two main goals are

a) Whitney's theorem that a differentiable n-manifold can be embedded as a closed subset 
of the euclidean space 2n + 1 (see §1.32);  and

b) Thom's theorem that the non-orientable cobordism group n is isomorphic to a certain 
stable homotopy groups (see §3.15).

Chapter I is mainly concerned with approximation theorems.  First the basic definitions are given 
and the inverse function theorem is exploited.  (§1.1 – 1.12).  Next two local approximation 
theorems are proved, showing that a given map can be approximated by one of maximal rank. 
(§1.13 – 1.21).  Finally locally finite coverings are used to derive the corresponding global 
theorems:  namely Whitney's embedding theorem and Thom's transversality lemma (§1.35).

Chapter II is an introduction to the theory of vector space bundles, with emphasis on the tangent 
bundle of a manifold.

Chapter III makes use of the preceding material in order to study the cobordism group n.

1



Differential Topology                                                                                                                                          John Milnor

Chapter I   Embeddings and Immersions of Manifolds

Notation.  If x is in the euclidean space n, the coordinate of x are denoted by (x1, …, xn).  Let
||x|| = max |xi|;  let Cn(r) denote the set of x such that ||x|| < r;  and Cn(x0, r) the set of x such that
||x – x0|| < r.  The closure of a cube C is denoted by C.

A real valued function f(x1, …, xn) is differentiable if the partials of f of all orders exist and are 
continuous (i.e., “differentiable” means C∞).  A map f = (f1, …, fp) : U → p (where U is an open set, 
in n) is differentiable if each of the coordinate functions f1, …, fp is differentiable.  Df denotes the 
Jacobian matrix of f; one verifies that D(gf) = Dg·Df.  The notation ∂(f1, …, fp)/∂(x1, …, xn) is also 
used.  If n = p, |Df| denotes the determinant.

1.1  Definition.  A topological n-manifold Mn is a Hausdorff space with a countable basis which is 
locally homeomorphic to n.

A differentiable structure  on a topological manifold Mn is a collection of real-valued functions, 
each defined on an open subset of Mn such that:

1) For every point p of Mn there is a neighbourhood U of p and a homeomorphism h of U 
onto an open subset of n such that a function f, defined on the open subset W of U, is in 
 if and only if fh-1 is differentiable.

2) If Ui are open sets contained in the domain of f and U = Ui, then f | U   if and only if
f | Ui is in , for each i.

A differentiable manifold Mn is a topological manifold provided with a differentiable structure ; 
the elements of  are called the differentiable functions on Mn.  Any open set U and 
homeomorphism h which satisfy the requirement of 1) above are called a coordinate system on Mn.

Notation.  A coordinate system is sometimes denoted by the coordinate functions:
h(p) = (u1(p),  …, un(p)).

1.2  Alternate definition.  Let a collection (Ui, hi) be given, where hi is a homeomorphism of the 
open subset Ui of Mn onto an open subset of n, such that

a) the Ui's cover Mn;
b) hjhi

-1 is a differentiable map on hi(Ui ∩ Uj), for all i, j. 

Define a coordinate system as an open set U and homeomorphism h of U onto an open subset of n 

such that hih–1 and hhi
–1 are differentiable on h(U ∩ Ui) and hi(U ∩ Ui) respectively, for each i.  

Define a differentiable structure on Mn as the collection of all such coordinate systems.  A function 
f, defined on the open set V, is differentiable if fh–1 is differentiable on h(U ∩ V), for all coordinate 
systems (U, h).

One shows readily that these two definitions are entirely equivalent.

1.3  Definition.  Let M1, M2 be differentiable manifolds.  If U is an open subset of M1,
f : U  → M2 is differentiable if for every differentiable function g on M2, gf is differentiable on M1.

If A  M1, a function f : A → M2 is differentiable if it can be extended to a differentiable function 
defined on a neighbourhood U of A.
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f : M1 → M2 is a diffeomorphism if f and f–1 are defined and differentiable.
(A coordinate system (U, h) on Mn is then an open set U in Mn and a diffeomorphism h of U onto an 
open set in n.)

If A  M, we have just defined the notion of differentiable function for subsets of A.  Suppose that A 
is locally diffeomorphic to k:  this collection is easily shown to be a differentiable structure on A. 
In this case, A is said to be a differentiable submanifold of M.

The following lemma is familiar from elementary calculus.

1.4.  Lemma.  Let f : Cn(r) → n satisfy the condition |∂fi/∂xj| ≤ b for all i, j.  Then
||f(x) – f(y)|| ≤ bn||(x – y)||, for all x, y  Cn(r).

1.5.  Theorem  (Inverse Function Theorem).  Let U be an open subset of n, let f : U → n be 
differentiable, and let Df be non-singular at x0.  Then f is a diffeomorphism of some neighbourhood 
of x0 onto some neighbourhood of f(x0).

Proof:  We may assume x0 = f(x0) = 0, and that Df(x0) is the identity matrix.
Let g(x) = f(x) – x, so that Dg(0) is the zero matrix.  Choose r > 0 so that x  U and Df(x) is non-
singular and |∂gi/∂xj)| ≤ 1/2n, for all x with ||x|| < r.

Assertion.  If y  Cn(r/2), there is exactly one x  Cn(r) such that f(x) = y:

By the previous lemma,
 ||g(x) – g(x0)|| ≤ (½)||x – x0|| on Cn(r).                                              (*)

Let us define {xn}inductively by x0 = 0, x1 = y, xn + 1 = y – g(xn).  This is well-defined, since
xn – xn – 1 = g(xn – 2) – g(xn – 1) so that

||xn – xn – 1|| ≤ (½)||xn – 2 – xn – 1|| ≤ ||y||/2n – 1;

and thus ||xn|| ≤ 2||y|| for each n.  Hence the sequence {xn} converges to a point x with ||x|| ≤ 2||y||, so 
that x  Cn(r).  Then x = y – g(x), so that f(x) = y.  This proves the existence of x.  To show 
uniqueness, note that if f(x) = f(x1) = y,  then g(x1) – g(x) = x – x1, contradicting (*).
Hence f–1 : Cn(r/2) → Cn(r) exists.  Note that

||f(x) – f(x1)|| ≥ ||x – x1|| – ||g(x) – g(x1)|| ≥ (½)||x – x1||

so that ||y – y1|| ≥ (½)||f–1(y) – f–1(y1)||.  Hence f–1 is continuous;  the image Cn(r/2) of under f–1 is open 
because it equals Cn(r) ∩ f–1(Cn(r/2)), the intersection of two open sets.
To show that f–1 is differentiable, note that

 f(x) = f(x1) + Df(x1)·(x – x1) + h(x, x1),

where (x – x1) is written as a column matrix and the dot stands for matrix multiplication.  Here
h(x, x1) / ||x – x1|| → 0 as x → x1.  Let A be the inverse matrix of Df(x1).  Then

A·(f(x) – f(x1)) = (x – x1) + A·h(x, x1),    or
A·(y – y1) + A·h1(y, y1) = f–1(y) – f–1(y1),

where h(y, y1) = –h(f–1(y), f–1(y1)).  Now

h1(y, y1) / ||y – y1|| = –[h(x, x1) / ||x – x1||](||x – x1|| / ||y – y1||).

Since ||x – x1|| / ||y – y1|| ≤ 2, h1(y, y1) / ||y – y1||  → 0 as y → y1.  Hence

D(f–1) = A = (Df)–1.
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This means that (Df)–1 is obtained as the composition of the following maps:

Cn(r/2) → Cn(r) → GL(n)          →          GL(n);
f–1              Df              matrix inversion

where GL(n) denotes the set of non-singular n × n matrices, considered as a subspace of
n2-dimensional euclidean space.  Since f–1 is continuous and Df and matrix inversion are C∞, (Df)–1 is 
continuous, i.e.,  is  f–1 is C1.  In general, if  f–1 is Ck, then by this argument (Df)–1 is also, i.e.,  f–1 is of 
class Ck + 1.  This completes the proof.                                                                                                  □

1.6.  Lemma.  Let U be an open subset of n, let f : U → p (n ≤ p), f(0) = 0, and let Df(0) have rank 
n.  Then there exists a diffeomorphism g of one neighbourhood of the origin in p onto another so 
that g(0) = 0 and gf(x1, …, xn) = (x1, …, xn, 0, …, 0), in some neighbourhood of the origin.

Proof:  Since ∂(f1, …, fp)/∂(x1, …, xn) has rank n, we may assume that

∂(f1, …, fp)/∂(x1, …, xn)

is the submatrix which is non-singular.  Define F : U × p – n → p by the equation

F(x1, …, xp) = f(x1, …, xn) + (0, …, 0, xn + 1, …, xp).

F is an extension of f, since F(x1, …, xn, 0, …, 0) = f(x1, …, xn).
DF is non-singular at the origin, since its determinant everywhere equals

|∂(f1, …, fp)/∂(x1, …, xn)|,

which is non-zero.  Hence F has a local inverse g, so that g maps one neighbourhood of the origin in 
p onto another, and

gF(x1, …, xp) = (x1, …, xp)
and hence

gf(x1, …, xn) = (x1, …, xn, 0, …, 0).                                                  □

1.7.  Corollary.  Let Ak be a differentiable sub-manifold of Mn.  Given x  Ak, there is a coordinate  
system (U, h) on Mn about x, such that h(U ∩ A) = h(U) ∩ k (where k is considered as the 
subspace k × 0 of k × k = n).

Proof:  Let (Ui, hi) be a coordinate system on Mn about x;  by hypothesis, there is a differentiable 
map f of a neighbourhood V of x in Mn into k such that f | V ∩ A = f1 is a diffeomorphism whose 
range is an open set W in k.   We may assume U1 = V, and h1(x) = f(x) = 0.
Now fh1

–1h1f–1  is the identity on W, so that its Jacobian, which equals D(fh1
–1)¸D(h1f–1) is non-

singular.  Hence D(h1f–1) has rank k, so that by the previous lemma, there is a diffeomorphism g of 
some neighbourhood V1  h1(U1) of 0 onto another such that g(0) = 0 and
gh1f1

–1(x1, …, xk) = (x1, …, xk, 0, …, 0).  Then U = h1
–1(V1) and h = gh1 will satisfy the requirement of 

the lemma.                                                                                                                                            □

1.8.  Lemma.  Let U be an open subset of n, let f : U → p, f(0) = 0, (n ≥ p), and let Df(0) have 
rank p.  Then there is a diffeomorphism h of some neighbourhood of the origin in n onto another 
such that h(0) = 0 and fh(x1, …, xn) = (x1, …, xp).

Proof:  We nay assume ∂(f1, …, fp)/∂(x1, …, xp) is non-singular at 0, since Df(0) has rank p.  Define 
F : U → n by the equation
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F(x1, …, xn) = (f1(x), …, fp(x), xp + 1, …, xp).

Then DF(0) is non-singular;  let h be the local inverse of F.  Let g project n onto the subspace p;
f = gF.  Then

fh(x1, …, xn) = gFh(x1, …, xn) = g(x1, …, xn) = (x1, …, xp).                                □

1.9.  Exercise.  Let U be an open subset of n, f : U → p, f(0) = 0;  and let Df(x) have rank k for all 
x in U.  Then there are local diffeomorphisms h and g of n and p respectively such that

 gfh(x1, …, xn) = (x1, …, xn, 0, …, 0).

1.10.  Definition.  If f : M1 → M2, the rank of f, written rank(f), at x is the rank of  D(h2fh1
–1) at 

h1(x), where (U1, h1) and (U2, h2) are coordinate systems about x and f(x), respectively.  The 
differentiable map f : M1

n → M2
p is an immersion if rank(f) = n everywhere (n ≤ p).  It is an 

embedding if it is also a homeomorphism into.

If f : M1
n → M2

p, then y  M2
p is a regular value of f if rank(f) = p on the entire set f–1(y).  Otherwise, 

y is a critical value.  (If y  f(M1
n), y is, by definition, a regular value of f.)

1.11.  Exercise.  If A is a differentiable submanifold of M,  the inclusion A → M is an embedding 
and conversely if  f : M1 → M is an embedding then f(M1) is a differentiable submanifold .

1.12.  Exercise.  If y is a regular value of f : M1
n → M2

p, then f–1(y) is a differentiable submanifold of 
M1

n of dimension n – p (or empty).

1.13.  Definition.  A subset A of n has measure zero if it may be covered by a countable collection 
of cubes Cn(x, r) having arbitrarily small total volume.  In such a case, n \ A is everywhere dense 
(i.e., it intersects every non-empty open set).

1.14.  Lemma.  Let U be an open subset of n;  let f : U → n be differentiable.  If A  U has 
measure zero, so does f(A).

Proof:  Let C be any cube with C  U.  Let b denote the maximum of |∂fi/∂xj)| on C for all i, j.  By 
1.4, ||f(x) – f(y)|| ≤ bn||x – y|| for x, y  C.
Now A ∩ C has measure zero;  let us cover A ∩ C by cubes C(xi, ri) with closure contained in C, 
such that ∑i = 1, ∞ri

n < ε.  Then f(C(xi, ri))  C(f(xi), bnri), so that f(A ∩ C) is covered by cubes of total 
volume bnnn∑i = 1, ∞ri

n < bnnnε.  Hence f(A ∩ C) has measure zero.
Since A can be covered by countably many such cubes C, f(A) has measure zero.                             □

1.15.  Corollary.    If f : U → n be differentiable, where U is an open subset of n and n < p, then 
f(U) has measure zero.

Proof:  Project U × p - n onto U and apply f.  Since U × 0 has measure zero in p, so does f(U).      □

1.16.  Definition.  If A M, M has measure zero if h(A ∩ U) has measure zero for every coordinate 
system (U, h).

1.17.  Corollary.  If f : M1
n → M2

p is differentiable and n < p, then f(M1
n ) has measure zero.

1.18.  Definition.  Let (p, n) denote the space of p × n matrices, with the differentiable structure 
of the euclidean space pn.  Let (p, n; k) denote the subspace consisting of matrices of rank k. 
Thus (p, n; n) is an open subset of (p, n) if p ≥ n;  the determinantal criterion for rank proves 
this.  More generally, we have:
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1.19.  Lemma.  (p, n; k) is a differentiable submanifold of M(p, n) of dimension k(p + n – k), 
where k ≤ min(p, n).

Proof:    Let E0  (p, n; k);  we may assume that E0 is of the form,
A0  B0

, where  A0 is a non-
C0  D0

singular k × k matrix.  There is an ε > 0 such that if all the entries of A – A0 are less than ε, A must

also be non-singular.   Let U consist of all matrices in M(p, n) of the form E =
A  B

, with all the
C  D

entries of A – A0 are less than ε.  
Then E is in (p, n; k) if and only if D = CA–1B:  for the matrix

 
  

Ik 0 A  B
=

A B
X Ip – k C  D XA + C  XB + D

has the same rank as E.  If X = –CA–1 , this matrix is

A B  
.0 CA–1B+ D

If D = CA–1B, this matrix has rank k.  The converse also holds, for if any element of –CA–1B+ D is 
different from zero, this matrix has rank > k.
Let W be the open set in euclidean space of dimension

(pn – (p – k)(n - k)) = k(p + n – k)

consisting of matrices 
A  B    

 with all the entries of A – A0 are less than ε.  The map
C  0

A  B    
→

A B
C  0 0 CA–1B+ D

is then a diffeomorphism of W onto the neighbourhood  U ∩ M(p, n; k) of E0.                                  □

1.20.  Theorem.  Let U be an open set in n, and let f : U → p be differentiable, where p ≥ 2n. 
Given ε > 0, there is a p × n matrix A = (ai

j) with each |ai
j| < ε, such that g(x) = f(x) + A·x is an 

immersion (x written as a  column matrix.)  

Proof:  Dg(x) = Df(x) + A;  we would like to choose A in such a way that Dg(x) has rank n for all x. 
I.e., A should be of the form Q – Df, where Q has rank n.  
We define Fk : (p, n; k) × U → (p, n) by the equation

Fk(Q, x) = Q – Df(x).

Now Fk is a differentiable map, and the domain of Fk has dimension k(p + n – k) + n.  As long as
k < n, this expression is monotonic in k (its partial derivative with respect to k is p + n – 2k).  Hence 
the domain of Fk has dimension not greater than

(n – 1)(p + n – (n – 1)) + n = (2n – p) + pn – 1

for k < n.  Since p ≥ 2n, this dimension is strictly less than pn = dim((p, n)).
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Hence the image of Fk has measure zero in (p, n), so that there is an element A of (p, n), 
arbitrarily close to the zero matrix, which is not in the image of Fk for k = 0, …, n – 1.  Then
A + Df(x) = Dg(x) has rank n, for each x.                                                                                             □

1.21.  Theorem.  Let U be an open subset of n;  and let f : U → p be differentiable.  Given ε > 0, 
there are matrices A(p × n) and B(p × 1) with entries less than ε in absolute value such that

g(x) = f(x) + A·x + B
has the origin as a regular value.

Remark.  The following much more delicate result has been proved by [Sard, A.]:  The set of  
critical values of any differentiable map has measure zero.

Proof of 1.21.  Note that the theorem is trivial if p > n, since then f(U) has measure zero, and we 
may choose A = 0 and B small in such a way that 0 is not in the image of g.
Assume p ≤ n.  We wish Dg(x0) = Df(x0) + A to have rank p, where x0 ranges over all points such 
that

g(x0) = 0 = f(x0) + A·x0 + B.

Hence A is of the form Q – Df(x), and B is of the form –f(x) – A·x, where Q is to have rank p.
We define Fk : (p, n; k) × U → (p, n) × p by the equation

Fk(Q, x) = (Q – Df(x), –f(x) – (Q – Df(x))·x).

Then Fk is differentiable.  If k < p, the dimension of its domain is not greater than
(p – 1)((p + n – (n – 1)) + n = p + pn – 1.  Hence the image of Fk, k = 0, …, p – 1 has measure zero; 
so that there is a point (A, B) arbitrarily close to to the origin which is not in any such image set. 
This completes the proof.                                                                                                                     □

1.22.  Definition.   A covering of a topological space X is locally-finite if every point has a 
neighbourhood which intersects only finitely many elements of the covering.  A refinement of a 
covering of X is a second covering each element of which is contained in an element of the first 
covering.  A Hausdorff space is paracompact if every open covering has a locally-finite open 
refinement.

If X is paracompact, and {Uα} is an open covering, there is a locally-finite open covering {Vα} with
Vα  Uα for each α.  For let {Wβ}be a locally-finite refinement of {Uα};  choose α(β) so that
Wβ  Uα(β) for each β.  Set Vα0 = Uα(β) = α0Wβ.  Given a neighbourhood intersecting only finitely many 
Wβ, it intersects only finitely many Vα as well.

1.23.  Theorem.  A locally compact Hausdorff space having a countable basis is paracompact. 

Proof:  Let X be paracompact and let U1, U2, … be a basis for X with Ui compact with each i.  There 
exists a sequence A1, A2, … of compact sets whose union is X, such that Ai  IntAi + 1:  set A1 = U1. 
Given Ai compact, let k be the smallest integer such that Ai is contained in U1  …  Uk;  Let Ai + 1 

equal the closure of this set union Ui + 1.
Let O be an open covering of X.  Cover the compact set Ai + 1 \ IntAi by a finite number of open sets
V1, … Vn where each Vi is contained in some element of O, and in the open set IntAi + 2 \ Ai – 1 .  Let Pi 

denote the collection {V1, … Vn}, and let P = P0  P1  … .  P refines O, and since any compact 
closed neighbourhood C is contained in some Ai, C can intersect only finitely many elements of P. □

1.24.  Exercise.  Prove that a paracompact space is normal.  (First prove that it is regular.)
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1.25.  Theorem.  Let Mn be a differentiable manifold, {Uα} an open covering of Mn.  There is a 
collection (Vj, hj) of coordinate systems on Mn such that

1) {Vj} is a locally-finite refinement of{Uα}. 
2) hj(Vj) = Cn(3).
3) If Wj = hj

–1((Cn(1)), then {Wj} covers Mn.

Proof:  The proof proceeds along lines similar to the previous one.  The only difference is that one 
chooses the Vj to satisfy 2), and makes sure that the sets hj

–1((Cn(1)) also cover Ai + 1 \ IntAi .             □

1.26.  We wish to construct a C∞ function φ(x1, …, xn) such that φ = 1 on Cn(1), 0 < φ < 1 on
Cn(2) \ Cn(1), φ = 0 on n \ Cn(2).
This function may be defined by the equation φ(x1, …, xn) = ∏i =1, nψ(xi), where

ψ(x) = λ(2 + x)·λ(2 – x) / [λ(2 + x)·λ(2 – x) + λ(x – 1) + λ(–x – 1)]
and

λ(x) = 
exp(– 1/x) if x > 0
0 if x ≤ 0.

Note that the denominator in the expression for ψ is always positive, and that

ψ(x) = 1 for |x| ≤ 1
0 < ψ(x) < 1 if 1 < |x| < 2

ψ(x) = 0 if |x| ≥ 2.

1.27.  Definition.  Let f, g : X → Y, where Y is metrisable, and let δ(x) be a positive continuous 
function defined on X.  Then g is a δ-approximation to f if d(f(x), g(x)) < δ(x) for all x.  [If one takes 
the δ-approximation to f to be a neighbourhood of f in the function space F(X, Y), this imposes a 
topology on the function space, independent of the metric on Y provided X, Y are paracompact.]

1.28. Theorem.  Given a differentiable map f : Mn → p where p ≥ 2n, and a continuous positive  
function δ on Mn, there exists an immersion g : Mn → p which is a δ-approximation to f.  If rank f  
= n on the closed set N, we may choose g | N = f | N.

Proof:   Note that rank f = n on a neighbourhood U of N.  Cover Mn by U and Mn \ N.  Let (Vj, hj) be 
a refinement of this covering, constructed as in 1.25.  As before, hi(Wi) = Cn(1) and hi(Vi) = Cn(3). 
Let hj(Uj) = Cn(2).  Let the Vi be so indexed with positive and negative integers that those Vi with 
non-positive indices are the ones contained in U.  Let ε1 = min of δ(x) on the compact set Ui.
Set f0 = f.  Given fk – 1 : Mn → p, having rank n on Nk – 1 = j < kWi , consider fk – 1hk 

– 1 : Cn(3) → p. 
Let A be a p × n matrix;  let FA : Cn(3) → p be defined by the equation

FA(x) = fk – 1hk
– 1(x) + φ(x)A·(x),

where (x) is written (as usual) as a column matrix (n × 1);  A is yet to be chosen;  and φ(x) is the 
function defined in 1.26.
First, we want FA(x) to have rank n on the set K = hk (Nk – 1 ∩ Uk );  we are given that fk – 1hk

– 1 has rank 
n on K.  Thus

D(FA(x)) = D(fk – 1hk
– 1(x)) + A·(x)·Dφ(x) + φ(x)A.
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(Dφ is a 1 × n matrix.)  The map of K × M(p, n) into M (p, n) which carries (x, A) into D(FA(x)) is 
continuous.  It carries K × (0) into the open subset M (p, n; n) of M (p, n).  Hence if A is sufficiently 
small, this map will carry K × A into M (p, n; n);  our first requirement is that A be this small.
Secondly, we require A to be small enough that ||A·(x)|| < εk/2k for all x  Cn(3).
Finally, by 1.20, A may be chosen arbitrarily small so that  fk – 1hk

– 1(x) + A·(x) has rank n on Cn(2). 
Let A be chosen to satisfy this requirement.
We then define fk  : Mn → p by the equation:

fk (y) =
fk – 1(y) + φ(hk(y))A·hk(y) for y   Vk

fk – 1(y) for y   M \ Uk.

These definitions agree on the overlapping domains, so that fk  is differentiable.  By the first 
condition on A, it has rank n on Nk – 1; by the third condition it has rank n on Wk.  By the second 
condition,  fk  is a δ/2k approximation to fk – 1.
We define g(x) = limk→∞fk (x).  Since the covering Vk is locally-finite, all the fk agree on a given 
compact set for k sufficiently large;  it follows that g is differentiable and has rank n everywhere.  It 
is also a δ-approximation to f.                                                                                                              □

1.29.  Lemma.  If p > 2n, any immersion f : Mn → p can be δ-approximated by a 1 - 1 immersion g. 
If f is 1 - 1 in a neighbourhood U of the closed set N, we may choose g | N = f | N.

Proof:  Choose a covering {Uα} of Mn such that f | Uα is an embedding (possible by 1.6).  Let (Vi, hi) 
be the locally-finite refinement constructed in 1.25;  let φ(x) be the function constructed in 1.26. 
Let

φ1(y) =
φ(h1(y)) for y   Vi

0 for other y.

Then φ1 is differentiable.  As before, we assume (Vi, hi) refines the covering (U, Mn \ N) and that 
those Vi with non-positive indices are the ones contained in U.
Let f0 = f.  Given the immersion fk – 1 : Mn → p, we define fk by the equation

fk(y) = fk – 1(y) + φk(y)bk,

where bk is a point of p yet to be chosen.  By the argument of the previous theorem, if bk is chosen 
sufficiently small, fk will have rank n everywhere.  The first requirement is that bk be this small;  the 
second requirement is that bk be small enough that fk be a δ/2k approximation to fk – 1.
Finally, let N2n be the open subset of Mn × Mn consisting of pairs (y, y0), with φk(y) ≠ φk(y0). 
Consider the differentiable map

(y, y0)  –[fk – 1(y) – fk – 1(y0 )] / [φk(y) – φk(y0)]

from N2n into p .  Since 2n < p, the image of N2n has measure zero, so that bk may be chosen 
arbitrarily small and not in this image.  It follows that fk(y) = fk(y0) if and only if φk(y) = φk(y0) and
fk – 1(y) = fk – 1(y0) (k > 0).
Define g(y) = limk→∞fk(y).  If g(y) = g(y0) = and y ≠ y0, it would follow that fk – 1(y) = fk – 1(y0) and
φk(y) = φk(y0) for all k > 0.  The former condition implies that f(y) = f(y0), so that y and = y0 cannot 
belong to any one set Ui.  Because of the latter condition, this means that neither is in any set Ui for 
i > 0.  Hence, they lie in U, contradicting the fact that f is 1 - 1 on U.                                                □

1.30.  Definition.  Let f : Mn → p.  The limit set L(f) is the set of y  p such that y = lim f(xn) for 
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some sequence {x1, x2, …} which has no limit point on Mn.

Exercise.  Show the following:

1) f(Mn) is a closed subset of p if and only if L(f)  f(Mn)

2) f is a topological embedding if and only if f is 1 - 1 and L(f) ∩ f(Mn) is vacuous.

1.31.  Lemma.  There exists a differentiable map f : Mn →  with L(f) empty.

Proof:  Let (Vi, hi) and φ be chosen as in 1.25 and 1.26 with i ranging over positive integers;  let

φi(y) =
φ(hi(y)) if y   Vi

0 otherwise.

Define f(y) = ∑j(jφj(y)).  This sum is finite, since Vi is a locally-finite covering.  If {xi} is a set of 
points of Mn having no limit point, only finitely many lie in any compact subset of Mn.  Given m, 
there is an integer i such that xi is not in W1  …  Wm.  Hence xi  Wj for some j > m, whence
f(xi) > m.  Thus the sequence f(xm) cannot converge.                                                                           □

1.32.  Corollary.  Every Mn can be differentiably embedded in 2n + 1 as a closed subset.

Proof:  Let f : Mn →   2n + 1 differentiably, with L(f) = 0.  Set δ(x) ≡ 1, and let g be a 1 - 1 
immersion which is a δ-approximation to f.  Then L(g) is empty, so that g is a homeomorphism.

1.33.  Definition.  Let f : Mn → Np be differentiable.  Let  N1
p - q be a differentiable submanifold of 

Np.  Let f(x)  N1
p – q.  Let (u1, …, un) be a coordinate system about x;  and let (v1, …, vp) be a 

coordinate system about f(x) such that on N1
p – q, v1 = ··· = vp = 0 (see 1.6).  Consider the condition 

that ∂(v1, …, vq)/∂(u1, …, un) has rank q at x.   This is the transverse regularity condition for f and 
N1

p – q at x.  [Exercise:  Show that this condition is independent of coordinate system.]

Note that the set of points on which the transverse regularity condition is satisfied is an open subset 
of f –1(N1

p – q);  f is said to be transverse regular on N1
p – q if the condition is satisfied foe each x in

f –1(N1
p – q).

1.34.  Lemma.  If f : Mn → Np is transverse regular on N1
p – q then f –1(N1

p – q) is a differentiable  
submanifold of dimension n – q (or is empty).

Proof:  Let π project p onto its first q components;  π : p → q.  If (V, h) = (v1, …, vp) is the 
coordinate system hypothesised in 1.33, then

N1
p – q ∩ V = h –1π –1(0)

where 0 denotes the origin in q;  and f –1(N1
p – q ∩ V) = (πhf) –1(0).  Since πhf has rank q at

x  f –1(N1
p – q ∩ V), the origin is a regular value of πhf.  Hence (πhf) –1(0) is a differentiable 

submanifold of Mn of dim n – q (see 1.12).                                                                                          □

1.35.  Theorem.  Let f : Mn → Np be differentiable;  let N1
p – q be a closed subset of Mn such that the 

transverse regularity condition for f and N1
p – q holds at each x in A ∩ f –1(N1

p – q).  Let δ be a positive  
continuous function on Mn.  There exists a differentiable map g : Mn → Np such that

1) g is a δ-approximation to f,
2) g is transverse regular on N1

p – q, and

10
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3) g | A = f | A.

Proof:   There is a neighbourhood U of A in Mn such that f satisfies the transverse regularity 
condition on U ∩ f –1(N1

p – q).  Cover Np by Np \ N1
p – q = Y0 and coordinate system (Yi, ηi) for i > 0; 

with coordinate functions (v1, …, vn) such that  v1 = ··· = vp = 0 on N1
p – q.  Now the open sets f –1(Yi) 

cover Mn, as do the open sets U, Mn \ A.  Let (Vj, hj) be a refinement of both coverings, constructed 
as in 1.25.  Recall that hj(Vj) = Cn(3), hj(Uj) = Cn(2), hj(Wj) = Cn(1), and the Wj cover Mn.  The Vj are 
to be indexed with positive and negative integers so that those Vj which are contained in U are the 
ones with non-positive indices.
Let φ be as in 1.26, and define

φi(x) =
φ(hi(x)) for x  Vi and 
0 elsewhere.

For each j choose i(j) ≥ 0 so that f(Vj) is contained in Yi(j).
Set f0 = f.  Suppose fk -1 is defined and satisfies the transverse regularity condition for N1

p – q at each 
point of the intersection of fk -1

–1(N1
p – q) with j < kWj.  Furthermore suppose that fk -1

–1(Uj)  Yi(j) for 
each j.  Setting i = i(k), it follows in particular that fk -1

–1(Uk)  Yi.
Consider

π ηifk -1hk
–1 : Cn(2) → q;

By 1.21, there is an arbitrarily small affine function L(x) = A·(x) + B such that when added to the 
previous function, the resulting map has the origin as a regular value.  Consider q as the first q 
coordinates in p, and define

fk(x) =
ηi

–1(ηifk -1(x) + L(hk(x) φk(x))  for x in a neighbourhood of Uk

fk -1(x)  for x in Mn \ Uk.

Here L is yet to be chosen.  Of course, we must choose L small enough that

ηifk -1 + Lφk

lies in Cn(1)  for x  Uk, in order that ki
–1 may be applied to it.  This is the first requirement on L. 

Secondly, we choose L small enough that fk is a δ/2k approximation to fk -1.  Thirdly choose L small 
enough so that fk (Uj) is contained in Yi(j) for each j.  This is possible since only a finite number of the 
sets Uj can intersect Uk.
Now fk by definition satisfies the transverse regularity condition for N1

p – q at each point of
fk 

–1(N1
p – q) ∩ Wk.  We want to choose L small enough that the condition is satisfied at each point of 

this intersection of fk 
–1(N1

p – q) with j < kWj.  It is sufficient to consider the intersection of this set 
with Uk;  let this intersection be denoted by K.  Consider the function which maps the pair (x, L)
(x  K) into

(fk(x), D(π ηifk -1hk
–1)·(hk(x))  N1

p – q × M(q, n).

This function is continuous and carries K × (0) into the set

[(Np \ N1
p – q) × M (q, n)]  [N1

p – q × M (q, n; q)],

which is open in N1
p – q × M (q, n).  Hence for L sufficiently small, (K, L) is carried into this set, so 

that fk satisfies the transverse regularity condition for N1
p – q at each point of fk 

–1(N1
p – q) ∩ (j < kWj).

We define g(x) = limk→∞fk(x), as usual.                                                                                                 □
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Chapter II   Vector Space Bundles

2.1  Definition.  An n-dimensional real vector space bundle ξ is a triple (π, a, s) where π : E → B is 
an onto continuous map between Hausdorff spaces that satisfy the following:  

1) Fb = π–1(b), called a fibre, is an n-dimensional real vector space with s : R × E → E carrying
R × Fb into Fb, and a : U(Fb × Fb)  E × E → U(Fb) carrying Fb × Fb into Fb, as scalar product 
and vector addition, respectively.

2) (Local triviality)  For each b  B, there is a neighbourhood U of b and a homeomorphism
φ : U × n → π–1(U) such that φ is a vector space isomorphism of  b' × n  Fb', for each b'  U.

If in 2) the neighbourhood U may be taken as all B, the bundle is said to be the trivial bundle.

If ξ, η are n-dimensional and p-dimensional vector space bundles, respectively, we define the 
product bundle ξ × η as follows:

E(ξ × η) = E(ξ)× E(η)
B(ξ × η) = B(ξ)× B(η)

(π × λ)(x, y) = ((π(x), λ(y))

where π, λ are the projections in ξ, η respectively and Fb(ξ × η) has the usual product structures for 
vector spaces.

If U is a subset of B(ξ), then ξ | U denotes the bundle π : π–1(U) → U.  It is called the restriction of 
the bundle to U.

2.2  Definition.  Let Mn be a differentiable manifold and let x0 be in Mn.  A tangent vector at x0 is an 
operation X which assigns to each differentiable function f defined in a neighbourhood U of x0, a 
real number, that is, X : (U) → .  The following conditions must be satisfied:

1) If g is a restriction of f, X(g) = X(f).
2) X(cf + dg) = cX(f) + dX(g) for c, d  

3) X(f·g) = X(f)·g(x0) + f(x0)·X(g), where the dot means ordinary real multiplication.

Then X(1) = X(1·1) = X(1) + X(1), by 3).  Hence X(1) = 0 and X(c) also = 0, by 2).

If one thinks of a tangent vector as being the velocity vector of a curve lying in the manifold, then 
X(f) is merely the derivative of f with respect to the parameter of the curve.  This is made more 
precise below.

2.3  Lemma.  Let (u1, …, un) be a coordinate system about x.  Let X be a tangent vector at x.  Then 
X may be written uniquely as a linear combination of the operators ∂/∂ui:

X = ∑αi∂/∂ui.

Proof:  We assume u(x) is the origin.  Given any f(u1, …, un) define

g(u1, …, un) =
[f(u1, …, un) – f(0, u2, …, un)] / u1    if u1 ≠ 0
∂f(0, u2, …, un)/∂u1    if u1 = 0.

To see that g is differentiable, note that
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g(0, u2, …, un) = ∫[0, 1][∂f(0, u2, …, un)/∂u1]dt.

(Then f(u1, …, un) = u1g1(u1, …, un) + f(0, u2, …, un).)  Similarly,

f(0, u2, …, un) = u2g2(u2, …, un) + f(0, 0, u3, …, un),

where g2(0) = ∂f/∂u2(0).  Finally we have f(u1, …, un) = ∑uigi + f(0), where gi(0) = ∂f/∂ui(0).  Thus 

X(f) = ∑X(ui)gi(0) + 0·X(gi) = ∑αi∂f/∂ui(0),
where αi = X(ui).

Remark.  If (v1, …, vn) is another coordinate system about x, and X = ∑βj∂/∂vj., then
αi = X(ui) = ∑βj∂ui/∂vj.  The αi are called the components of the vector X with respect to the 
coordinate system (u1, …, un).

2.4  Alternate definition.  A tangent vector at x is an assignment to every coordinate system
(u1, …, un) about x of an element (α1, …, αn) of n, with the requirement that if (βj) is assigned to the 
system (v1, …, vn), then αi = ∑βj∂ui/∂vj.  The derivation operator X is then defined as ∑αi∂/∂ui.  One 
checks readily that

a) X(f) is independent of the coordinate system used, and
b) X(f) satisfies requirements 1), 2), and 3) for a tangent vector.

2.5.  Definition.   For each x in Mn , the tangents at x form an n-dimensional vector space (by 2.3, 
the operations ∂/∂ui form a basis).   Let the totality of these be denoted by E(τ);  define
π : E(τ) → Mn as mapping all the tangent vectors X at x0 into x0 .  The local product structure around 
x0  U is given by φU : U × n → E(τ), where (U, h) = (u1, …, un) is a coordinate system on Mn, and 
φU is defined as follows:

φU(x0, a1, …, an) = tangent vector X = ∑αi∂/∂ui at x0.

Since φU is to be a homeomorphism, this structure imposes a topology on E(τ);  since φV
–1φU is a 

homeomorphism on (U ∩ V) × n, this topology is unambiguously determined.  One checks 
immediately that φU gives us a vector space bundle isomorphism for each fibre.

Indeed, φV
–1φU is a C∞ map on (U ∩ V) × n, so that E(τ) is a differentiable manifold of dimension 

2n (using definition 1.2 of a differentiable manifold).  The map π is differentiable of rank n.
This bundle τ is called the tangent bundle of Mn.

2.6.  Definition.  If f : M1
n → M2

m , there is an induced map df : E(τ1) → E(τ2) defined as follows: 
df(X) = Y, where Y(g) = X(gf).  If X is a vector at x0, Y is a vector at f(x0).  This is clearly linear on 
each fibre;  it is called the derivative map.

If (U, h) and (V, k) are coordinate systems about x0, f(x0) respectively, and (αi), (βj) are the respective 
components of X and Y with respect to these coordinate systems, then (βj) = D(kfh−1)(αi) where the 
vector components are written as column matrices, as usual.

2.7.  Definition.  Let ξ, η be two n-dimensional vector bundles.  A bundle map f : ξ → η is a 
continuous map of E(ξ) into E(η) which carries each fibre isomorphically onto a fibre.  The induced 
map  fB : B(ξ) → B(η) is automatically continuous.

If B(ξ) = B(η) and the induced map is the identity, f is said to be an equivalence.  Note that if f is an 
equivalence, it is a homeomorphism:  Locally f is just a map U × n → V × n.  The projection of f−1 

into the factor U is continuous, because fB
−1 is the identity.  But f may be given by a non-singular 
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matrix function of x  U;  f−1 is the inverse of this matrix, so that the projection of f−1 into the factor 
n is continuous.  Hence f−1 is continuous.

If there is an equivalence of ξ onto η, we write ξ  η.

2.8.  Lemma.  Given a bundle η with projection map λ : E(η) → B(η), and a map f : B1 → B(η), 
there is a bundle π : E1 → B1 and a bundle map g : E1 → E(η) such that λg = fπ.  Furthermore, E1 is  
unique up to an equivalence.

g
  E1 → E(η)
 π↓         ↓λ
  B1 → B(η)

f

Remark.  E1 is called the induced bundle by f and is often denoted by f*η.

Proof:  Let E1 be that subset of B1 × E(η) consisting of points (b, e) such that f(b) = λ(e).  Define
π(b, e) = b;  g(b, e) = e.  To show that E1 is a vector space bundle, let φ : V × n → E(η) be a product 
neighbourhood in E(η), and let  f(U)  V.  Then define φ1 : U × n → E1 by φ1(b, x) = (b, φ((b), x)). 
Then φ1 is continuous and 1 - 1;  its image equals π−1(U).  Its inverse φ1

−1 carries (b, e) into
(b, pφ−1(e)), where p is the natural projection V × n → n, hence it is continuous.  The map g is an 
isomorphism on each fibre.
Now suppose g' : E' → E(η) is a bundle map, where π' : E' → B1 is a bundle and λg' = fπ'.  We map 
E' → E1 by mapping

e'   (π'(e'), g'(e'))  E1.

Because g' is an isomorphism on each fibre, so is this map;  and it induces the identity on the base 
space.  Hence it is an equivalence.

  g                 g'
E1 → E(η) ← E'

π↓         ↓λ        ↓π'
B1 → B(η) ← B1

f                  f'

2.9.  Definition.  Let ξ, η be two bundles over B.  The Whitney sum ξ  η is a bundle defined as the 
induced bundle d*(ξ × η) for d : B → B × B be the diagonal map and the product bundle E(ξ) × E(η) 
→ B × B.

ξ  η = d*(ξ × η) → E(ξ) × E(η)
            ↓                   ↓

               B     →      B × B
           d

The proof of the following is left as an exercise.

a) the fibre over b inξ  η is Fb(ξ) × Fb(η), so that dim(ξ  η) = dim ξ + dim η,
b)  is commutative: ξ  η  η  ξ,
c)  is associative: (ξ  η)  ς  ξ  (η  ς).

2.10.  Definition.  If ξ, η are bundles over B, then g : E(ξ) → E(η) is a homomorphism if

1) it maps each fibre linearly into a fibre,
2) the induced map on B is the identity.
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Note that an equivalence is both a bundle map and a homomorphism.  An embedding of bundles is 
a 1 - 1 homomorphism.

2.11.  Theorem.  If f : E(ξ) → E(η) maps each fibre linearly into a fibre, then f may be factored into  
a homomorphism followed by a bundle map.

Proof:  Let π1, π2 be the projections in ξ, η, respectively.
Let fB : B(ξ) → B(η) be the map induced by f.  Let E1 = fB 

*η be the bundle induced by fB ;  let g be 
the bundle map E1 → E(η) and π be the projection E1 → B(η).

h             g
E(ξ ) → E1 → E(η) 
↓π1         ↓π        ↓π2

B(ξ ) → B(ξ) → E(η) 
i               fB

Define h : E(ξ) → B(ξ) × E(η) by the equation h(e) = (π1(e), f(e)).  The image of h actually lies in 
that subset of B(ξ) × E(η) which is E1;  then h is a homomorphism.  From the definition f = gh.       □

2.12.  Lemma.  Let ξ, η be bundles over B of dimensions n, p, respectively;  let g : ξ → η be a 
homomorphism.  If g is onto, then the kernel (g) is a bundle.  If g is 1 - 1, then the cokernel (g), i.e., 
the quotient η / image (g), is a bundle.  

Proof:  Suppose g is 1 - 1 (i.e., has rank n when restricted to each fibre.)  In E(η), we define e ~ e' if 
e – e' exists and is in the image of g.  We identify the elements of these equivalence classes;  the 
resulting identification space is defined to be E(η / g(ξ)).  It is a bundle over B with projection 
naturally defined and each fibre is a vector space of dimension p – n.  We need only to show the 
existence of a local product structure.
Let U be an open set in B, with ξ | U equivalent to U × n and η | U equivalent to U × p.  Let g0 

denote the homomorphism of  U × n → U × p induced by g.  Now (η / g(ξ)) | U is equivalent to 
the quotient U × p / g0(U × n), so that it suffices to show that this latter quotient is locally a 
product.
g0 is given by a matrix M(b)  (p, n) which depends continuously on the point b  U.  Given b0, 
we may assume that in a neighbourhood U0 of b0, the first n rows are independent.  We define
h : U0 × n × p – n → U × p as the linear function on  whose matrix (non-singular) is

M(b)
0

Ip – n

The image of U0 × n × 0 under h is just g0(U0 × n);  since h is an equivalence, it induces an 
equivalence of

U0 × p – n  U0 × n × p – n / U0 × n × 0  onto  U0 × p / g0(U0 × n).

Secondly, suppose g is onto (i.e., it has rank p on each fibre.)  E(g–1(0)) is defined as that subset of 
E(ξ) consisting of points e with g(e) = 0.  Again, we need to show the existence of a local product 
structure.  Let U, g0, and M(b) be as above.  Given b0, we may assume that the first p columns of 
are independent in the neighbourhood U0 of b0.  We define h : U0 × n → U0 × p × n – p by the 
matrix function

M(b)
0 Ip – n
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Now h followed by the natural projection of U0 × p × n – p onto U0 × p equals g0 | U .  Hence h–1 

maps U0 × 0 × n – p onto g0
–1(U0 × 0);  since h is an equivalence, so is the restriction of h–1 to

U0 × 0 × n – p.                                                                                                                                       □

Remark.  If g is onto, ξ / g–1(0) is a bundle, being the quotient of the inclusion homomorphism
g–1(0) → ξ.  If g is 1 - 1, g(ξ) is a bundle, being the kernel of the projection homomorphism
η → g(ξ).

2.13.  Definition.  If φ is a non-negative function on B, the support of φ is the closure of the set of x 
with φ(x) > 0.  A partition of unity is a collection {φα} of non-negative functions on B, such that the 
sets {Cα} = {support(φα)} form a locally-finite covering of B, and ∑φα(x) = 1 (this is a finite sum for 
each x.) 

2.14.  Lemma.  Let B be a normal space;  {Uα} a locally-finite open covering of B.  Then there is a  
partition of unity {φα} with support(φα)  Uα for each α.

Proof:  First, we show that there is an open covering {Vα} of B with Vα  Uα for each α.  Assume 
that Uα are indexed by a set of ordinals (well-ordering theorem.)  Let Vα be defined for all α < β and 
assume that the sets Vα along with the sets Uα for α ≥ β cover B.  Consider the set
A(β) = B \ α < βVα \ α > βUα.  Then A(β)  Uβ.  Let Vβ be an open set containing the closed set A(β), 
with Vβ  Uβ (normality.)  This completes the construction of the Vα.

Now let gα be a function which is positive on Vα and 0 outside Uα (normality again.)  Define
φα0(x) = gα0(x) / ∑gα(x).  Since {Uα}  is locally-finite, the sum in the denominator is finite and 
positive, so {φα } is well-defined.                                                                                                        □

Remark1.  If B is a differentiable manifold, φα may be chosen to be differentiable:  Cover B with 
coordinate systems (Vi, hi) as in 1.25 refining the covering Uα, B \ Vα.  Let φi(y) = φi(hi(y)) for y  Vi, 
and φi(y) = 0 otherwise (φ as in 1.26.)  Let gα(y) = ∑φi(y), where the sum extends over all i such that 
Vi  Uα. 

                                i      φ

2.15.  Lemma.  Let B be paracompact and let 0 → ξ → η → ζ → 0 be an exact sequence of  
homomorphism of bundles.  Then there is equivalence f : η → ξ  ζ, with fi the natural inclusion 
and φf−1 the natural projection.

Proof:  Let dim ξ = n;  dim ζ = p.
We first construct a Riemannian metric on η (i.e., a continuous inner product in E(η).)  Let {Uα} be 
a locally-finite covering of B with η | Uα trivial;  let gα be the corresponding projection of η | Uα onto
n + p.  Let {φα} be a partition of unity with support(φα)  Uα.
If e, e' are in E(η) and π(e) = π(e'), define e·e' = ∑α φα(π(e))gα(e)·gα(e'), where the dot on the right 
hand side is the ordinary scalar product in n + p.  This is a finite sum;  it satisfies the axioms for a 
scalar product.
The way we use the Riemannian metric is to break η up into iE(ξ) and its orthogonal complement. 
Let ξ' be the image of ξ in η and let E(ζ') be defined as that subset of consisting of elements which 
are orthogonal to iE(ξ).  In order to show that ζ' has a local product structure, consider the 
homomorphism

h : η → ζ'

which sends each vector into its orthogonal projections in ξ'.  [Verification that h is continuous. 
Over any coordinate neighbourhood U we can choose a basis a1, … an for the fibre of ξ'.  Then the 
1 See Appendix, Proposition A. 
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function h carries v  E(η) into ∑tjaj  E(ξ')  E(η), where tj = ∑Bjk(v·ak) and where (Bjk) denotes 
the inverse matrix to (aj·ak).]  Since h is onto, its kernel ζ' is again a vector space bundle.

Now the bundle i(ξ) = ξ' is equivalent to ξ.  It remains to show that ξ' is equivalent to ζ and that η is 
equivalent to ξ'  ζ'.  The former follows immediately from the fact that φ | ζ' is a homomorphism; 
form rank considerations it must be 1 - 1 and onto as well.  The latter follows by noting that
E(ξ'  ζ') is defined as the subset of  E(ξ') × E(ζ') consisting of points (e1, e2) such that π(e1) = π(e2). 
Consider the map f of E(ξ'  ζ') into E(η) obtained by taking (e1, e2) into their sum in E(η) (their 
sum exists because e1 and e2 lie in the same fibre.)  This is clearly a homomorphism; from rank 
considerations, it must be 1 - 1 and onto.                                                                                             □

2.16.  Definition.  Let M1, M2 be differentiable manifolds and let f : M1 → M2 be an immersion.  The 
normal bundle νf is defined as follows:

Let τ1, τ2 be the tangent bundles of M1, M2 respectively.  By 2.11, the map df : E(τ1) → E(τ2) may be 
factored into a homomorphism h of E(τ1) into E(f*τ2) followed by a bundle map g.  Now h is a 1 - 1 
homomorphism because f is an immersion;  hence by 2.12, f*τ2 / image (h) is a bundle over M1.  It is 
called the normal bundle νf.

Then 0 → τ1 → f*τ2 → νf  → 0 is an exact sequence if homomorphisms, so that by 2. 15, f*τ2 is 
equivalent to τ1  νf.  Indeed, given a Riemannian metric on f*τ2, νf is equivalent to the orthogonal 
complement of the image of τ1.
Let us consider the case M2 = n + p, where dim M1 = n.  Then τ2 is the trivial bundle, so that f*τ2 is as 
well.  (Proof:  If f : B1 → B(η) and η is trivial, so is f*η.  We have the diagram

                B × n

                ↓π

f : B1 → B

E(f*η) is defined as that subset of B1 × (B × n) consisting of points (b1, b, x) such that f(b1) = (b, x), 
i.e., of all points (b1, f(b1), x).  If we map this into (b1, x), we obtain an equivalence of f*η with the 
bundle B1 × n → B1.
Thus τ1  νf is equivalent to a trivial bundle.  In what follows, we investigate the following 
question:  Given ξ, does there exist an η with ξ  η trivial?  Using 1.28, this is always the case for ξ 
the tangent bundle of an n-manifold, and indeed η may be chosen also to have dimension n.  A more 
general answer appears in 2.19.

2.17.  Definition.  Let f : M1 
n → M2

p;  If f has rank p at every point of M1, it is said to be regular.  If 
f is regular, the homomorphism h : τ1 → f*τ2 given by 2.11 is an onto map.  By 2.12, the kernel of h 
is a bundle αf.  It is called the bundle along the fibre.

Note that f–1(y) is a submanifold of M1 of dimension n – p (by 1.12 or 1.34.)  The inclusion iy of
f–1(y) into M1 induces an inclusion diy of its tangent bundle into τ1.  The kernel of h consists precisely 
of the vectors which are in the image of some diy, i.e., the vectors tangent to the submanifolds f–1(y) 
are the ones carried into 0 by h.

g   
One has the exact sequence  0 → αf → τ1 → f*τ2 → 0, so that by 2.15, τ1 is equivalent to αf   f*τ2. 

2.18.  Definition.  A bundle ξ is of finite type if B is normal and may be covered by a finite number 
of neighbourhoods U1, … Uk such that ξ | Ui is trivial for each i.

2.19.  Lemma.  ξ is of finite type if B is compact, or paracompact finite dimensional.
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Proof:  The former statement is clear;  let us consider the latter.  By definition, the dimension of B 
is not greater than n if every covering has an open refinement such that

no point of B is contained in more than n + 1 elements of the refinement.                 (*)

It is a standard theorem of topology that an n-manifold has dimension n in this sense.
Cover B by open sets U, with ξ | U trivial;  let {Vα} be an open refinement of this covering 
satisfying (*).  By 1.22, we may assume that {Vα} is locally-finite as well.  Let {φα} be a partition of 
unity with support(φα)  Vα for each α (2.14.)

Let Ai be the set of unordered (i + 1)-tuple of distinct elements of the index set of {φα}.  Given a in 
Ai, where a = {α0, …, αn}, let Wia be the set of all x such that  φα(x) < min {φα0(x), …, φαn(x)} for all 
α ≠ α1, …, αi.  Each set Wia is open, and Wia ∩ Wib = Ø if a ≠ b.  Also Wia is contained in the 
intersection of the supports of φα0(x), …, φαi(x), and hence in some set Vα.  If we set Xi equal to the 
union of all sets Wia, for fixed i, ξ | Xi is trivial.  Note that ξ | Wia is trivial and Wia are disjoint.

Finally, the sets X0, …, Xn cover B.  Given x in B, x is contained in at most n + 1 of the sets Vα, so 
that at most n + 1 of the functions φα are positive at x.  Since some φα is positive at x, x is contained 
in one of the sets Wia for 0 ≤ i ≤ n.
[The intuitive idea of the proof is as follows:  Consider an n-dimensional simplicial complex, with 
φα the barycentric coordinate of x with respect to the vertex α.  The sets W0a will be disjoint 
neighbourhoods of the vertices, the sets W1a disjoint neighbourhoods of the open 1-simplices, and so 
on.]                                                                                                                                                       □

2.20.  Theorem.  If ξ is of finite type, there is a bundle η such that ξ  η is trivial.

Proof:  We proceed by showing that ξ may be embedded in a trivial bundle B × m, so that we have 
                                                                 i

the exact sequence 0 → ξ → B × m → B × m / i(ξ) → 0 by 2.12.  The theorem then follows from 
2.15.  (Paracompactness is not needed since the trivial bundle clearly has a Riemannian metric.)
Cover B by finitely many neighbourhoods U1, …, Uk with ξ | Ui trivial for each i.  Let φ1, …, φk be a 
partition of unity with support(φi)  Ui for each i (2.14).  Let fi denote the equivalence of E(ξ | Ui) 
onto Ui × n;  let fi

1, …, fi
n denote the coordinate functions of its projection into m.

We define h : E(ξ) → B × mk as follows:

h(e) = (π(e), (φi π(e))·fi
j(e))   i = 1,  …, k;    j = 1, …, n

(no summation indicated.)  This is well-defined, since φi π(e) = 0 unless e  E(ξ | Ui).  It is clearly a 
homomorphism, since each fi

j is linear on E(ξ | Ui).  To show that it is 1 - 1, let e ≠ 0.  Then for some 
i, φiπ(e) > 0.  Since fi is an equivalence, fi

j(e) ≠ 0 for some j.  Hence h(e) ≠ (π(e), 0) as desired.        □

2.21.  Definition.  The bundle ξ is s-equivalent2 to η if there are trivial bundles οp, οn such that
ξ  οp  η  οn.

Here οp = B × p.  Symmetry and reflexivity are clear.  To show transitivity, assume ξ  οp  η  οq 

and η  οr  ζ  οs.  Then ξ  οp  οr  ζ  οs  οq.

Remark:  s-equivalence differs from from equivalence.  E.g., consider the two-sphere S2 in 3. 
Then τ2  ν1  ο3.  The normal bundle ν1 is easily seen to be trivial;  but it is a classical theorem of 
topology that τ2 is not (it does not admit a non-zero cross-section.)  Hence τ2 is s-trivial, but not 
trivial.

2 Short for “stably equivalent”.
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2.22.  Theorem.  The set of s-equivalence classes of vector space bundles of finite type over B forms 
an abelian group under 3.

Proof:  To avoid logical difficulties, we consider only subbundles of B × m, for all m.  This 
suffices, since any bundle of finite type may be embedded in some B × m, by 2.20.  The class οp of 
trivial bundles is the identity element.  The existence of inverses is the substance of 2.20.               □

2.23.  Corollary.  Given two immersions of the differentiable manifold M in euclidean space, their  
normal bundles are s-equivalent.                                                                                                         □

2.24.  Definition.  Mn is a π-manifold if M may be embedded in some n + p so that its normal 
bundle is trivial.

This is equivalent to the requirement that τn be s-trivial;  Let τn be s-trivial.  If we take some 
immersion of M into n + p, then τn  νp is trivial by 2.16, so that νp is s-trivial, i.e., νp  οq = οp + q for 
some q.  Consider the composite immersion M → n + p  n + p + q.  The normal bundle of M in
n + p + q is just νp  οq, which is trivial.
Conversely, if νp is trivial for some immersion, then τn is s-trivial because τn  νp is trivial.

2.25.  Definition.  Let Gp, n denote the set of all n-dimensional vector subspaces of n + p (i.e., all n-
dimensional hyperplanes through the origin.)  It is called the Grassman manifold of n-planes in
n + p space.
Its topology is obtained as follows;  Consider M(n, n + p; n);  we identify two elementss of this set 
if the hyperplane spanned by their row vectors are the same.  Gp, n is in 1 - 1 correspondence with 
this identification space, and is given the identification topology.  Let ρ be the projection

ρ : M(n, n + p; n) → Gp, n.

Now ρ(A) = ρ(B) if and only if A = CB for some non-singular n × n matrix C:  The hyperplane ρ(A) 
consists of all points (x1, …, xn + p) n + p which equal (c1, …, cn)·A for some choice of constants ci.  If 
ρ(A) = ρ(B), then

(1, 0, …, 0)·A = (c1
1, …, cn

1)·B
(0, 1, …, 0)·A = (c1

2, …, cn
2)·B

···          =        ···  
(0, 0, …, 1)·A = (c1

n, …, cn
n)·B

for some choice of cj
i.  Then IA = CB, where C has rank n because A does.  The converse is clear.

(a)  Gp, n is locally euclidean.  Let A  M(n, n + p; n);  after permuting the columns, we may assume 
A = (P, Q) where P is n × n and non-singular.  Let U be the set of all such A;  it is an open set in 
M(n, n + p; n), being the inverse image of the non-zero reals under the continuous map
(P, Q) → det P.  If ρ(P, Q) = ρ(R, S), where P is non-singular, then (P, Q) = (CR, CS) for some non-
singular C.  Hence R is necessarily non-singular;  it follows that ρ−1(ρ(U)) = U, so that ρ(U) is open 
in Gp, n (by definition of the identification topology.)

We show ρ(U) homeomorphic with pn.  Define φ : U → pn by φ(P, Q) = P−1Q.  If ρ(P, Q) = ρ(R, S) 

3 The resulting abelian group is called the K-group of B.  For more on this, see “Vector Bundles and K-Theory” by 
Allen Hatcher in his homepage http://www.math.cornell.edu/~hatcher/#ATI. 
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then (P, Q) = (CR, CS), so that
P−1Q = (CR)−1(CS) = R−1S.

Hence φ induces a continuous map φ0 : ρ(U) → pn.  Define ψ : pn → ρ(U) by ψ(Q) = ρ(I, Q) where 
Q is an n × p matrix.  One checks immediately that ψ and φ0 are inverse of each other.

M(n, n + p; n)                 U                           

↓ρ                            ↓ρ    φ0φ  
Gp, n                              ρ(U)     pn

                                          ψ

(b)  To show that Gp, n is Hausdorff, we show that  maps every compact set into a closed set (this 
will clearly suffice.)  Let K be a compact subset of pn;  we show φ−1(K) is closed in M(n, n + p; n). 
φ−1(K) consists of all matrices (P, Q) with P non-singular and P−1Q  K.  Let (P, Q)  M(n, n + p; n) 
be the limit of the sequence {(Pi, Qi)} of elements of φ−1(K).  Since K is compact, some subsequence 
of the sequence {φ(Pi, Qi)} = {Pi

−1Qi} converges to a point R of K.  Then the corresponding 
subsequence of the sequence {Qi} converges to PR, so that C = P(I, R).  Since (P, Q) has rank n it 
follows that P is non-singular, so that (P, Q)  φ−1(K), as desired.
Hence Gp, n is a manifold of dimension pn.

(c)  Gp, n is a differentiable manifold and ρ is a differentiable map.  A function f on the open set V in 
Gp, n belongs to the differentiable structure D if fρ is differentiable.  To show that this satisfies the 
condition for a differentiable structure, we show that (ρ(U), φ0), as defined in (a), is a coordinate 
system.  Let f be defined on V  ρ(U).  Given Q  pn, fφ0

−1(Q) = fρ(I, Q) so that fφ0
−1 is 

differentiable if fρ is.  Conversely, given (P, Q)  V, fρ(P, Q) = fφ0
−1φ0ρ(P, Q) = fφ0

−1(P−1Q), so that fρ 
is differentiable if fφ0

−1 is.

(d)  Gp, n is compact.  Let L be the subset of M(n, n + p; n) consisting of matrices whose rows are 
orthonormal vectors.  L is a closed and bounded subset of n(n + p).  Since ρ(L) = Gp, n (the Gram-
Schmidt orthogonalisation process proves this), Gp, n is compact.

(e)  Gp, n is diffeomorphic to Gn, p.  Geometrically, the homeomorphism h is defined as carrying each 
hyperplane into its orthogonal complement.  It is clearly 1 - 1;  to show it is differentiable we use 
the coordinate system (ρ(U), φ0) defined in (a).  Let g map U into M(n, n + p; n) by carrying (P, Q) 
into (−(P−1Q)τ, Ip);  it is differentiable (τ denotes transpose.)  The row space of (P, Q) is the same as 
that of (In, P−1Q), while the row vectors of this matrix are orthogonal to those of (−(P−1Q)τ, Ip) 
(multiply the one by the transpose of the other.)  Hence g induces h | ρ(U), so that the latter is 
differentiable. 

2.26.  Definition.  Let E(γp
n) be defined as that subsets of Gp, n × n + p consisting of pairs (H, x) 

where x is a vector lying in the hyperplane H.  It is called the universal bundle (for reasons we shall 
see.)  The projection π maps (H, x)  into H;  the fibre is thus an n-dimensional subspace of n + p.

γp
n is an  n-dimensional vector space bundle over Gp, n.  We need to show the existence of a local 

product structure.  Let (ρ(U), φ0) be a coordinate neighbourhood on Gp, n, as in (a) above.  We define 
h : ρ(U) × n → π−1ρ(U) as carrying (H, (x1, …, xn)) into (x1, …, xn)·(In, Q) where Q = φ0(H).  This is 
a vector in the hyperplane H;  h is clearly an isomorphism on each fibre.  Its inverse is continuous, 
since it sends (H, (y1, …, yn + p)) in Gp, n × n + p into (H, (y1, …, yn)) in ρ(U) × n.

21



Differential Topology                                                                                                                                          John Milnor

2.27.  Definition.  ξ is a differentiable vector space bundle if E(ξ) and B(ξ) are differentiable 
manifolds, and if the homeomorphisms

U × n → π−1(U)

which specify the local product structure can be chosen as diffeomorphisms.

It follows that π : E → B is differentiable of maximum rank.  Note that B can be differentiably 
embedded in E by mapping b into the 0-vector of Fb.  The normal bundle of this embedding is just 
ξ.
Examples of differentiable bundles include the tangent bundles of a manifold, the normal bundle of 
an immersed manifold, and the universal bundle γp

n above.  In the latter case, E(γp
n) is embedded 

differentiably in Gp, n × n + p.

2.28.  Theorem.  Let ξn be an n-dimensional vector space bundle.  The following conditions are  
equivalent:

(a)  ξ is of finite type.
(b) There is a bundle ηp such that ξn  ηp is trivial.
(c) There is a bundle map ξn → γp

n for some p.  (Thus the terminology “universal bundle“ for γp
n.)

Proof:  We have already shown that (a)  (b) (2.20);  the bundle ηp  there constructed has 
dimension n(k – 1), where k is the number of elements in the covering U1, …, Uk of B(ξ) = B such 
that ξ | Ui is trivial.

(b)  (c):  Condition (b) means that ξn may be embedded in the trivial bundle B(ξ) × n + p;  let f be 
this embedding.  We wish to define g and gB in the following diagram:

g
E(ξ) → E(γp

n)
π↓         ↓  

B(ξ)  →  Gp, n
gB

Since f is a 1 - 1 homomorphism, f(Fb) is the cartesian product of b and an n-dimensional 
hyperplane Hn in n + p;  let gB(b) ≡ Hn.  If e  Fb, then f(e) = (b, x) where x is a vector in the 
hyperplane Hn;  let g(e) = (Hn, x) in Gp, n × n + p.  Then g(e) actually lies in the subset of Gp, n × n + p  

which constitutes E(γp
n).  From rank considerations, g is automatically an isomorphism on each 

fibre.

It remains to show that g is continuous.  Locally, g just looks like a map U × n → Gp, n × n + p.  We 
factor it into a continuous map h : U × n → M(n, n + p; n) × n + p followed by the projection ρ × 1 
into Gp, n × n + p.  Locally, f looks like a map U × n → B × n + p.  Let  e1, …, en be a basis for n; 
we define h(b, x) as (A, p2f(b, x)).  Here p2 projects B × n + p onto its second factor and A is the 
matrix having p2f(b, e1), …,  p2f(b, en) as its rows.  Then h is continuous and (ρ × 1)h equals g. 
(Note:  The converse assertion , (c) implies (b), can be proved by the same argument.)

(c)  (a):  Being compact, Gp, n is covered by a finitely many neighbourhoods Ui with γp
n | Ui 

trivial.  (In fact, (n + p)! / n!p! neighbourhoods will suffice.)  If f is a bundle map ξn → γp
n then the 

sets {fB
−1(Ui) = Vi} cover B, and ξ | Vi is equivalent to the bundle induced by fB : Vi → Gp, n (the 

uniqueness part of 2.8.)  Then ξ | Vi is trivial (since it is induced from a trivial bundle.)                    □
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Chapter III   The Cobordism Theory of Thom

3.1.  Definition.  An n-manifold with boundary Q is a Hausdorff space with a countable basis 
which is locally homeomorphic with n (the subset of n such that x1 ≥ 0.)  The boundary ∂Q is that 

subset of corresponding to n − 1 under the local homeomorphism (n − 1 being the subset of n with 
x1 = 0.)  ∂Q is well-defined, since the image of an open set in n under a homeomorphism of it into 
n must be open (Brouwer theorem on invariance of domain.)  It is clear that ∂Q is an (n – 1)-
manifold.
A differential structure D on Q is a collection of real-valued functions f defined on open subsets of 
Q such that

1) Every point of Q has an open neighbourhood U and a homeomorphism h of U into an open 
subset of n, such that f is in D if and only if fh–1 is differentiable.  (f is defined on an open 
subset of U;  fh–1 differentiable means that it may be extended to a neighbourhood of h(U) in 
n so as to be differentiable.)

2) If Ui are open sets contained in the domain of f and U = Ui, then f | U  D if and only if
f | Ui  D for each i.

As before, (U, h)is called a coordinate system on Q, and one can define differentiable structure 
alternatively by means of coordinate systems.

We impose an additional condition on D in 3.2. 

3.2.  Definition.  Let M1, M2 be compact differentiable n-manifolds.  They are said to be in the same 
cobordism class (M1 ~ M2) if there is a compact differentiable n + 1 manifold-with-boundary Q such 
that ∂Q is diffeomorphic with the disjoint union of M1 and M2 (denoted by M1 + M2.)

Symmetry and reflexivity of this relation are clear.  To show transitivity, we impose the additional 
condition on D that there is a neighbourhood U of ∂Q in Q which is diffeomorphic with ∂Q × [0, 1), 
the diffeomorphism being the identity on ∂Q × 0.  This is redundant, but we assume it to avoid 
proving it4.  Transitivity follows:
Let M1 + M2 be diffeomorphic with ∂Q1 and M2 + M3 be diffeomorphic with ∂Q2;  let  h1, h2 be the 
diffeomorphisms.  We form a new space Q3 from Q1  Q2 by identifying each point of h1(M2) with 
its image under h2 h1

–1.  There is then a homeomorphism of M2 × (–1, 1)  into this space which 
equals h1 when restricted to M2 × 0, and is a diffeomorphism of M2 × [0, (–1)i) into Qi for i = 1, 2. 
(It is derived from the postulated “product neighbourhoods” ∂Qi × [0, 1).)  If this is taken to be a 
coordinate system on Q3, Q3 becomes a differentiable manifold-with-boundary, and M1 + M3 is 
diffeomorphic with ∂Q3.  Q1 and Q2 diffeomorphic with subsets of Q3.

3.3.  Definition.  As usual, there are logical difficulties involved in considering these cobordism 
classes.  One way of avoiding them is to consider only manifolds-with-boundary embedded in some 
euclidean space n:  If Q1 is a  differentiable manifold-with-boundary and Q2 = ∂Q1 × [0, 1), then 
the space Q3 constructed in the preceding paragraph is a differentiable manifold, so that it may be 
embedded in some euclidean space.  Hence Q1 may so be embedded.

With these restrictions, the set of cobordism classes of n-manifolds forms an abelian group (denoted 

4 This fact is called the smooth collaring theorem.  See Appendix, Proposition B for a proof.
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by n) under the operation + (disjoint union.)  If M1 ~ M1' and M2 ~ M2', this means that Mi + Mi' is 
diffeomorphic with ∂Qi.  Then (M1 + M2) + (M1' + M2') is diffeomorphic with ∂(Q1  Q2), so that
M1 + M2 ~ M1' + M2' and the operation + is well-defined on cobordism classes.  The zero element is 
the vacuous manifold or the n-sphere (or ∂Q, where Q is any compact differentiable (n + 1)-
manifold-with-boundary.)  The remaining axioms are clear.  Note that M + M is diffeomorphic with 
∂(M × [0, 1]), so that every element is of order 2.

The groups n are called the (non-orientable) cobordism groups.  Let  denote the direct sum
0  1  2  ···.  There is a bilinear symmetric pairing of i, j into i + j, i.e., a homomorphism 
of i  j into i + j induced by the operation of cartesian product.
First, (M1 + M2) × M3 = (M1 × M3) + (M2 × M3) by definition of cartesian product.  Second, if M1 ~ 0, 
i.e., M1 = ∂Q, then M1 + M2 is diffeomorphic with ∂(Q × M2), so that M1 + M2 ~ 0.
Since M1 + M2 ~ M2 + M1, and since M1 × p ~ M1 (where p is a point-manifold), this pairing makes 
  into a (graded) commutative ring with unit.  Indeed, it is a graded algebra over the field /2. 

3.4.  Remark.  The general result of Thom is the following

Theorem.   is a polynomial algebra over /2 with one generator in each positive dimension 
except those of the form 2m – 1.  If n is even, projective n-space is a generator.

This theorem means that there are compact manifolds M2, M4, M5, … such that every compact 
manifold is in the cobordism class of a disjoint union  of products of these manifolds, and that there 
are no relations among the generators (except commutativity and associativity of products.)
Thom's procedure is to show that n is isomorphic with the (n + k)th homotopy group of a certain 
space Tk, and then to compute these homotopy groups.   We shall consider only the first of these two 
problems in the present notes.

3.5.  Definition.  Let h be an embedding of the differentiable manifold Mn in n + k;  consider the 
normal bundle of this embedding.  Using the standard Riemannian metric for the tangent bundle to 
n + k, this normal bundle is equivalent to the orthogonal complement of the image in the tangent 
bundle of n + k of the tangent bundle of Mn (2.16);  this complement we denote by νk.  Define e as 
the canonical map of E(νk) into n + k which maps the vector v normal to at x into its end point. 
(Described differently, one maps the tangent bundle to n + k into itself canonically by mapping the 
vector v, based at x, into the point v + x of n + k.  This map is differentiable;  its restriction to E(νk) is 
the map e.)
Consider Mn as the zero vectors of E(νk).  Then we have the

3.6.  Theorem.  There is a neighbourhood of Mn in E(νk) which is mapped diffeomorphically onto a 
neighbourhood of Mn in n + k.

Proof:  Note that e is differentiable, and that it has rank n + k at points of Mn  E(νk).  (This is easily 
checked by computing the derivative matrix of e with respect to a local coordinate system.)  Hence 
e has rank n + k in some neighbourhood of Mn in E(νk), so that it is a local homeomorphism at 
points of Mn:  It maps a neighbourhood of each x  Mn homeomorphically onto a neighbourhood of 
e(x).  We then appeal to the topological

Lemma.  Let X, Y be Hausdorff spaces with countable bases and X be locally compact.  If f : X → Y 
is a local homeomorphism and the restriction of f to the closed subset A is a homeomorphism, then f  
is a homeomorphism on some neighbourhood V of A.
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This lemma is proved as follows:

1) If A is compact, the lemma holds.  For otherwise, there would be points x, y arbitrarily close to 
A such that f(x) = f(y).  Since A has a compact neighbourhood, we may choose sequences {xn}, 
{yn} converging to x, y respectively, in A such that xn ≠ yn and f(xn) = f(yn).  Hence f(x) = f(y) so 
that x = y, f being a homeomorphism on A.  But then f is not a local homeomorphism at x.

2) Let A0 be a compact subset of A.  Then there is a neighbourhood U0 of A0 such that U0 is 
compact and f is a homeomorphism on U0  A0:  It will suffice for f to be 1 - 1, since f is a local 
homeomorphism.  By (1), let V0 be a neighbourhood of A0 so that is f | V0 1 - 1.  If no 
neighbourhood of A0 in V0 satisfies the requirement for U0, there is a sequence {xn}of X \ A 
converging to x  A0 with f(xn)  f(A).  Choose yn  A with f(xn) = f(yn).  Since f is continuous, 
{f(yn)} converges to f(x);  since f is a homeomorphism on A, {yn}converges to x.  Since xn ≠ yn, 
this contradicts the fact that f is a local homeomorphism at x.

3) Express A as the union of an ascending sequence of compact sets A1  A2  ···.  Let V1 be a 
neighbourhood of A1 such that V1 is compact and f is a homeomorphism on V1  A (by (2).) 
Given Vi a neighbourhood of Ai satisfying these conditions, consider the set Vi  Ai + 1.  It is a 
compact subset of Vi  A, and f is a homeomorphism on Vi  A.  Hence by (2) there is a 
neighbourhood Vi + 1 of Vi  Ai + 1 with Vi + 1 compact, such that f is a homeomorphism on
Vi  Ai + 1.  We proceed by induction:  f is 1 - 1 on V = Vi + 1, so that it is a homeomorphism on 
V (being a local homeomorhism-onto.)                                                                                        □

3.7.  Corollary.  Any differentiable submanifold of n + k is a differentiable neighbourhood retract.

Proof:  The projection of E(νk) → Mn induces (under e) a differentiable map of a neighbourhood of 
Mn in n + k onto Mn which is the identity on Mn.                                                                                  □

3.8.  Definition.  Let ξ be a vector space bundle with B(ξ) compact;  Let T(ξ) denote the 1-point 
compactification of E(ξ).  It is called the Thom space of ξ.  Let ∞ denote the added point.

Let ξ have a Riemannian metric.  Let Tε(ξ) be obtained from E(ξ) by identifying all vectors of length 
greater than or equal to ε to a point.  Let α(x) be a C∞ function with α'(x) ≥ 0 which equals 1 in a 
neighbourhood of x = 0 and → ∞ as x → 1.  The map of E(ξ) into T(ξ) which carries the vector e 
into the vector eα(||e|| / ε) induces a homeomorphism of Tε(ξ) onto T(ξ) which is a diffeomorphism 
on the set Eε(ξ), consisting of vectors of length less than ε.  The fact that B is compact is used here.

3.9.  Definition.  Let the compact manifold Mn be embedded in n + k.  νk is given the Riemannian 
metric of n + k;  by 3.6 there is a neighbourhood of Mn in n + k which is diffeomorphic to the subset 
E2ε(νk) of E(νk).  Such a neighbourhood is called a tubular neighbourhood of Mn.

By 3.8, we see that T(νk) is homeomorphic with the space obtained from n + k by collapsing the 
exterior of the ε-neighbourhood of Mn to a point.

We will need three lemmas concerning approximation by differentiable functions. 

3.10.  Lemma.  Let A be a closed subset of the differentiable manifold Mn,  let f : Mn → m be 
differentiable on A.  Let δ be a positive continuous function on Mn.  There exists g : Mn → m such 
that

1) g is differentiable,
2) g is a δ-approximation to f,
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3) g | A = f | A.

Proof:  It suffices to prove this lemma in the case m = 1.
Given x  A, f | A may be extended to a differentiable function fx in a neighbourhood Nx of x.  Let Nx 

be chosen small enough that |fx(y) − f(y)| < δ(y) for all y  Nx.
Given  x  Mn \ A, choose a neighbourhood Nx of x small enough that |f(y) − f(x)| < δ(y) for all
y  Nx.  Define fx(y) ≡ f(x) for y  Nx.
Let {φα} be a differentiable partition of unity with support(φα) contained in some Nx, say Nx(α) , for 
each α.  Define g(y) = ∑α φα(y)fx(α)(y).  One checks the conditions of the lemma easily.                      □

More generally:

3.11.  Lemma.  Let f : M1 → M2 be a continuous map of differentiable manifolds which is  
differentiable on the closed subset A of M1.  Let ε(x) > 0 be given; and give M2 the metric  
determined by some embedding M2  p.  Then there exists a differentiable map g : M1 → M2 such 
that

1) g is differentiable,
2) g is an ε-approximation to f,
3) g | A = f | A.

Proof:  There is a neighbourhood U of M2 in p of which  is a differentiable retract (3.7.)  Let ρ be 
the differentiable retraction of U onto M2.  Let δ(x) be a positive function on M2 so chosen that the 
cubical neighbourhood of f(x) of radius δ(x) lies in U, and so that its image under ρ has radius less 
than ε(x).  Let f1 : M1 → p be a differentiable map which is a δ-approximation to f, such that
f1 | A = f | A (by 3.10.)  Define g(x) = ρ(f1(x)).                                                                                       □

3.12.  Lemma.  Let f : M1 → M2 be a continuous map of differentiable manifolds;  let the metric on 
M2 be obtained by embedding it in some euclidean space.  Given ε(x), there is a δ(x) such that if
g : M1 → M2 is a δ-approximation to f, g is homotopic to f under a homotopy F(x, t) with

1) F(x, t) = f(x) for any x such that g(x) = f(x) and
2) F(x, t) is a  an ε-approximation to f for any t.

Proof:  Let U, ρ, and δ(x) be chosen as in 3.11.  Let g : M1 → M2 be a δ-approximation to f.
Then the line segment from g(x) to f(x) lies in U, so that

F(x, t) = ρ(tg(x) + (1 − t)f(x))

is well defined.  Furthermore F(x, t) is an ε-approximation to f(x) for any t.                                      □

3.13.  Definition.  We wish to define a homomorphism λ : πn + k(T(ξk), ∞) → n where n is the 
cobordism class of the base space for T(ξk).  To this end we need some preparation:

Let ξk be a differentiable vector space bundle with B(ξ) compact and m-dimensional;  let E(ξk) be 
given a metric by embedding it as a closed differentiable submanifold in some euclidean space (it is 
an (m + k)-manifold.)
Given an element of πn + k(T(ξk), ∞), let it be represented by the map

f : (Cn + k, ∂Cn + k) → (T(ξk), ∞),

where Cn + k is the closed cube [0, 1]n + k and ∂Cn + k is the boundary.  Let U denote the open subset 
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f−1(E(ξk)) of Cn + k.  Let g : U → E(ξk) be a differentiable δ-approximation to f | U, where δ is so 
chosen that δ < 1 and g is homotopic to f,  the homotopy F also being a 1-approximation to f.  (This 
ensures that F will be continuous if we define F(x, t) = ∞ for x  Cn + k \ U.)

Now g may be approximated in turn by a differentiable map h : U → E(ξk) which is transverse 
regular on the submanifold B(ξk) of E(ξk).  We choose the approximation close enough to h, the 
homotopy H being a 1-approximation to g for each t.  Extend h to Cn + k by defining h(x) = ∞ for
x  Cn + k \ U.  Then h is in the homotopy class of f.
h−1(B(ξk)) is a differentiable submanifold Mn of U which is closed in Cn + k, and thus compact.

3.14.  Theorem.   Define λ : πn + k(T(ξk), ∞) → n by assigning the cobordism class [Mn]  n to the 
homotopy class [h]  πn + k(T(ξk), ∞).  Then λ is a well-defined homomorphism.

Proof:  Let H : (Cn + k × I, ∂Cn + k × I) → (T(ξk), ∞) be a homotopy between h0 = H(x, 0) and
h1 = H(x, 1).  Let h0, h1 satisfy the conditions

1) hi is differentiable on hi
−1(E(ξk)) 

2) hi is transverse regular on B(ξk).  (i = 0, 1.)

We wish to show that h0
−1(B) and h1

−1(B) belong to the same cobordism class.
We may assume that H(x, t) = H(x, 0) for t ≤ 1/3, and  H(x, t) = H(x, 1) for t ≥ 2/3.  Let
U = H−1(E(ξk)) ∩ [Cn + k × (0, 1)];  then U is an open subset of n + k + 1.  Let G : U → E(ξk) be a 
differentiable 1-approximation to H which equals H on the closed subset A, where
A = U ∩ [Cn + k × (0, ¼]  [¾, 1)].  (See 3.11.  H is differentiable on A.)

Now G satisfies the transverse regularity condition for B(ξk) at points in A (since h0 and h1 are 
transverse regular on B(ξk)) so that by 1.35 there is a differentiable map F : U → E(ξk) which equals 
G on A, is transverse regular on B(ξk), and is a 1-approximation to G.  Because F is a 2-
approximation to H, it remains continuous if we define F(x, t) = ∞ for (x , t)  (Cn + k × (0, 1)) \ U. 
Because F equals H on A, it remains continuous if we define F(x, t) = H(x, t) for t = 0, 1.  Hence 
F−1(B) is a compact subset of Cn + k, being closed and bounded.

Because F | U is transverse regular on B, (F | U)−1(B) is a differentiable (n + 1)-submanifold of
Cn + k × (0, 1).  Then 

(F | U)−1(B) ∩ Cn + k × t =
h0

−1(B) × t    for t  [0, ¼],
h1

−1(B) × t    for t  [¾, 1].

Hence F−1(B) is a differentiable manifold-with-boundary whose boundary is h0
−1(B) + h1

−1(B).  Thus 
λ is well-defined.  
It is trivial to show λ is a homomorphism, because the sum in n is derived from disjoint union of 
representative manifolds.                                                                                                                     □

3.15.  Theorem.  If ξk is the universal bundle γm
k where k ≥ n + 1, m ≥ n then λ : πn + k(T(ξk), ∞) → n 

is onto.

Proof:  Let Mn be a compact manifold;  let k ≥ n + 1.  Let Mn be embedded in Cn + k  (1.32);  let νk be 
the normal bundle of this embedding.  The Riemannian metric on E(νk) is that derived from the 
natural scalar product on the tangent bundle to n + k, in which νk is contained.
By 3.6, for small ε the subset of E2ε(νk) of E(νk) is diffeomorphic with a tubular neighbourhood of 
Mn in Cn + k;  let U be the image of Eε(νk).
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Let p1 project Cn + k onto the space obtained from Cn + k by identifying Cn + k \ U to a point (denoted by 
Cn + k / (Cn + k \ U)).
Let p2 be the diffeomorphism of U onto Eε(νk), followed by the map of E(νk) into Tε(νk) which 
identifies all vectors of length ≥ ε (3.8.)  p2 is then extended by mapping Cn + k \ U into ∞.
Let p3 be the homeomorphism of Tε(νk) onto T(νk) constructed in 3.8.  The composite map p3p2p1 is a 
diffeomorphism of U onto E(νk).
Finally, let p4 be the bundle map of νk into γm

k induced from the embedding of Mn in n + k  m + k. 
Because both fibres have dimension k, this map satisfies the transverse regularity condition for Gk, m 

at each point of Mn.  Extend p4 in the obvious way to map T(νk) into T(γm
k).

Let g = p4p3p2p1.  Then g : ∂C → ∞.  Let μ(Mn) denote the homotopy class of g in πn + k(T(ξk), ∞). 
Now g is transverse regular on Gk, m and Mn = g−1(Gk, m).  By definition, the cobordism class of Mn is 
the image of μ(Mn) under λ, so that λμ(Mn) = [Mn].                                                                              □

3.16.  Theorem.  If ξk is the universal bundle γm
k where k ≥ n + 2, m > n then λ is one-to-one.

Proof:  Given an element of πn + k(T(ξk), ∞), we may suppose it represented by a map

f : (Cn + k, ∂Cn + k) → (T(ξk), ∞)

which is differentiable on f−1(E) and transverse regular on Gm, k (by 3.13.)  Let Mn = f−1(Gm, k);  we 
wish to show that if Mn is the boundary of an (n + 1)-manifold-with-boundary Q, then f is 
homotopic to the constant map.

Mn is a submanifold of Cn + k;  let its normal bundle be νk.  Let ε be chosen so that E2ε(νk) is 
diffeomorphic with the 2ε-neighbourhood of Mn;  let Uε be the image of the vectors of Eε(νk). 
Impose a Riemannian metric on γm

k;  let δ be so chosen that ||x|| ≥ ε  implies ||f(x)|| ≥ δ for x  E(νk).

Step 1.  f is homotopic to a map f1 such that

1) f1  is differentiable on  f1
−1(E) and transverse regular on Gm, k.

2) f = f1  on Mn = f−1(Gm, k).
3) f1  carries everything outside Uε  into ∞.

Define F : E(γm
k) → T(γn

k) by the equation F(e, t) = eα(t||e|| / δ), where α is the function defined in 
3.8.  Let f1(x) = F(f(x), 1).

Step 2.  By the diffeomorphism of U2ε with E2ε, f1 induces a map f1 of Eε(νk) into T(γn
k) which carries 

∂(Eε) into ∞.  Any homotopy of f1 which leaves ∂(Eε) at ∞ induces a homotopy of f1.
Now f1 is homotopic to a map f2 such that

1) f2 is differentiable on f2
−1(E) and transverse regular on Gm, k.

2) f2 = f1 on Mn = f−1(Gm, k).
3) f2 is locally a bundle map in some neighbourhood of Mn.

The homotopy leaves ∂(Eε) at ∞.

Consider G : E(γm
k) × I → T(γn

k) defined by the equation G(e, t) = f1 (te) / t.  As t → 0, G(e, t) 
approaches a limit which is non-zero if e ≠ 0 (since f1 is differentiable and transverse regular.)  It is 
easily seen to be a bundle map.  It will not suffice for our purpose, since it does not carry ∂(Eε) × I 
into ∞.  Choose δ > 0 so that ||x|| ≥ ε  implies ||G(x, t)|| ≥ δ for x  E(νk), t  I, and define

H(e, t) = [G(e, t)]α(−||G(e, t)|| / δ).
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If we set f2 = H(e, 0), then f2 is a bundle map for ||e|| small (since α(x) = 1 for x small.)  The map 
H(e, 1) = f1 (e)α(||f1 (e)|| / δ) does not equal f1, but it is homotopic to f1, the homotopy leaving ∂(Eε) at 
∞.  The homotopy is defined by the equation

K(e, t) = f1 (e)α(t||f1 (e)|| / δ),  as in Step 1.

Step 3.  Let Q be the n + 1 manifold-with-boundary such that Mn = ∂Q.  Let h be a diffeomorphism 
of Mn × [0, 1] into Q which carries Mn × 0 onto ∂Q.
Define h1 : Q → Cn + k × I as follows:

h1(x) = h(y, t)   if x = h(y, t) where (y, t)  (Mn, [0, ½]).
h1(x) = p, where p is some fixed point interior to Cn + k × I    if x  image h.
h1(x) = (1− β(t))h(y, ½) + β(t)p, where β is a C∞ function with β'(t) ≥ 0, β(t) = 0 in a neighbourhood 
of t = ½ and β(t) = 1 in a neighbourhood of t = 1    if x = h(y, t) where (y, t)  (Mn, [½, 1]).

h1 is a differentiable map of Int Q into Int(Cn + k × I);  and h1 is a 1 - 1 immersion in a neighbourhood 
of ∂Q.  Since dim(Cn + k × I) > 2(n + 1), h1 may be approximated by a 1 - 1 immersion h2 which 
equals h1 in a neighbourhood of ∂Q (by 1.29.)  It may be extended to an embedding of Q into
Cn + k × I.  (Since Q is compact, a 1 - 1 immersion is automatically an embedding.)  Let Q now be 
considered as this subset of Cn + k × I.

Step 4.  We have a map f2 of  Cn + k × 0 into T(γn
k) which is a bundle map when restricted to a small 

tubular neighbourhood of Mn × 0 in Cn + k × 0.  We extend it to Cn + k × [0, b) for b small in a trivial 
way.  Suppose there exists a map g of the ε'-neighbourhood N of Q in Cn + k × I into T(γn

k) which 
equals f2 in some neighbourhood of ∂Q in Cn + k × I and maps each point of N \ Q into a non-zero 
vector in E(γn

k).  Our theorem then follows:  Let δ be so chosen that, if the distance(x, Q) ≥ ε'/2, then 
||g(x)|| ≥ δ.

Define g1 : Cn + k × I → T(γn
k) by the equation

g1(x, s) =
g(x, ε)α(||g(x, s)|| / δ)    for (x, s)  N, and
∞    otherwise.

The restriction of g1 to Cn + k × 0 does not equal the map f2, but it is homotopic to f2, by the same 
technique as used at the end of Step 2.  g1 is the homotopy required for our theorem.

To show that the extension g exists, we refer to Steenrod,  “Fibre Bundles” (Princeton University 
Press, 1951.)  According to §19.4 and §19.7 of this book, the principal bundle associated with γn

k is 
an m-universal bundle.  That is:  given a vector space bundle ξk over a complex of dimension ≤ m, 
any bundle map of ξk, restricted to a subcomplex, into γn

k can be extended throughout ξk.  We will 
assume the well known result that Q can be triangulated.  The dimension n + 1 of Q is ≤ m.  Hence 
any bundle map of the normal bundle νk of Q, restricted to a polyhedral neighbourhood of ∂Q, into 
γn

k can be extended throughout νk.

Applying this result to the map f2, this completes the proof of 3.16.                                                   □ 

Letting Tk stand for the union of the Thom spaces T(γn
k)  T(γn + 1

k)  ···, in the weak topology, 
Theorem 3.15 and 3.16 imply the following.

3.17.  Theorem.  The cobordism group n is canonically isomorphic to the stable homotopy group 
πn + k(Tk), for k ≥ n + 2.                                                                                                                          □
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Appendix5

In this appendix we give a proof for the smooth collaring theorem.  Our exposition follows 
Dirk Schütz.  (See “Lecture06_handout.pdf” in the “material” for MAGIC002, in “courses” 
listed in the page “http://maths.dept.shef.ac.uk/magic/courses.php”.) 

First we show that partitions of unity allow us to glue together smooth functions which are only 
defined on subsets of a differentiable manifold M.

Proposition A:  Let {Uα} be an open cover of the differentiable manifold M and {φα} a partition of  
unity with support(φα)  Uα.  For every α, assume that fα : Uα  → k is a smooth function.  Then
f : M → k defined by

f(x) = ∑α fα(x)φα(x)
is a well defined smooth function.

Proof:  Observe that fα·φα : Uα  → k has support contained in support(φα), so can be extended to a 
smooth function on M.  Also, by the local finiteness, the formula for f is locally just a finite sum, so 
smoothness follows.                                                                                                                             □

The same procedure can be used to extend vector fields defined on each Vi to a vector field on M. 

Proposition B (Smooth Collaring Theorem):   Let M be a compact differentiable manifold with  
boundary.  Then there exists an embedding i : ∂M × [0, 1) → M with i(x, 0) = x for all x  ∂M.

Proof:  Let U1, …, Uk be a finite covering of M by coordinate charts, and let {φi : Ui → [0, 1]} be a 
partition of unity subordinate to this cover.
Case I: Ui  is diffeomorphic to an open set of n.  Define a vector field vi on Ui to be identically zero. 
Case II:  Ui contains boundary points.  Let φi : Ui → Ui' be a chart, and define a vector field vi on Ui 

such that the induced vector field on Ui'  n is constant e1 = (1, 0, …, 0)  n.
We get a vector field on M by using the partition of unity.  Let Φ be the corresponding flow.  As M 
is compact, and since the vector field is chosen on the boundary so that it is not possible to flow 
“out” of the manifold, we get a smooth flow

Φ : M × [0, ∞) → M

It is easy to check that Φ | ∂M × [0, 1) is the desired embedding.                                                       □

5 Added by the transcriber.
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