The centers of the matrix groups $U(n)$ and $S U(n)$

This note proves an assertion in the hints for one of the Additional Exercises for Chapter 7.

THEOREM. Let $U(n)$ be the group of unitary $n \times n$ matrices (the entries are complex numbers, and the inverse is the conjugate of the transpose), and let $S U(n)$ be the kernel of the determinant homomorphism $U(n) \rightarrow \mathbb{C}-\{0\}$. Then the centers of both subgroups are the matrices of the form $c I$, where (as usual) I denotes the identity matrix and $|c|=1$. In particular, the center of $S U(n)$ is a finite cyclic group of order n.

The argument relies heavily on the Spectral Theorem, which implies that for every unitary matrix A there is a unitary matrix P such that $P A P^{-1}$ is diagonal.

Proof. We shall first prove the result for $U(n)$. If A lies in the center then for each unitary matrix P we have $A=P A P^{-1}$. Since the Spectral Theorem implies that some matrix $P A P^{-1}$ is diagonal, it follows that A must be diagonal. We claim that all the diagonal entries of A must be equal. Suppose that $a_{j, j} \neq a_{k, k}$. If P is the matrix formed by interchanging the $j^{\text {th }}$ and $k^{\text {th }}$ columns of the identity matrix, then P is a unitary matrix and $B=P A P^{-1}$ is a diagonal matrix with $a_{j, j}=b_{k, k}$ and $b_{j, j}=a_{k, k}$. But this means that A does not lie in the center of $U(n)$. Therefore the only matrices which can lie in the center of $U(n)$ have the form $c I$, and since we are working with unitary matrices it follows that $|c|$ must be 1.

We now turn to the case of $S U(n)$. If $D \subset U(n)$ is the subgroup of diagonal matrices, then of course D is central and we have $U(n)=D \cdot S U(n)$; in other words, every unitary matrix is the product of a matrix in $S U(n)$ and a diagonal matrix. Suppose now that $A \in S U(n)$ lies in the center of $S U(n)$; then the observations in the preceding sentence imply that A lies in the center of $U(n)$, so it follows that the center of $S U(n)$ is equal to $D \cap S U(n)$. Therefore the determination of the center reduces to specifying which diagonal matrices $c I$ (where $|c|=1$) have determinant equal to 1 . But the determinant of $c I$ is c^{n}, so the center consists of all matrices $c I$ such that $c^{n}=1$; i.e., the center consists of all matrices $c I$ such that c is a complex $n^{\text {th }}$ root of 1 . Since the set of all such matrices is isomorphic to \mathbb{Z}_{n}, we see that the center of $S U(n)$ is a cyclic group of order n.

