EXERCISES FOR MATHEMATICS 205A

SPRING 2016 — Part 1

The headings denote chapters of the text for the course:

J. Lee, Introduction to Smooth Manifolds (Second Edition), Springer-Verlag, 2012.

Exercises which appear throughout the text are numbered in the form m.n, and exercises at the end of the chapters are numbered in the form m-n. Except when explicitly noted otherwise, it will suffice to prove exercises for manifolds without boundary.

A. Review of Mathematics 205A

Lee: A.22, A.23

Additional exercises

1. If X is a topological space, a family of subsets $\mathcal{E} = \{E_{\alpha}\}$ is said to be *locally finite* if each point $x \in X$ has an open neighborhood U_x such that U_x is disjoint from all but finitely many subsets in the family. Prove that if \mathcal{E} is a locally finite family, then the closure of $\cup_{\alpha} E_{\alpha}$ is equal to the union $\cup_{\alpha} \overline{E_{\alpha}}$, where as usual \overline{E} denotes the closure of E.

2. Let X be a topological space which is a union of an increasing countable sequence of subsets K_n such that for each n the set K_n is contained in the interior of K_{n+1} . Prove that every compact subset of X is contained in some K_n .

3. Explain why every open subset of some \mathbb{R}^m satisfies the conditions in the previous exercise.

C. Review of multivariable calculus

Lee: C.5(c)

Additional exercises

1. Let U be an open subset of some \mathbb{R}^q , so that U is an increasing union of compact spaces K_n as in Additional Exercise A.1. Let $\{f_n\}$ be a sequence of smooth functions on U such that $m \ge n$ implies that $f_m | K_n = f_n | K_n$. Prove that the sequence $\{f_n\}$ converges uniformly on compact subsets and that the limit function is smooth. [*Hint:* If f is the limit function, why do we have $f|K_n = f_m|K_n$ for all $k \ge m$?]

2. Let A be an $m \times n$ matrix, and let $L_A : \mathbb{R}^n \to \mathbb{R}^m$ be the associated linear transformation $L_A(X) = AX$ (matrix product, viewing X as a column vector. Prove that there is some constant K > 0 such that the lengths of X and AX satisfy $|AX| \leq K \cdot |X|$ for all X. Also prove that if K is a compact subset and A is a continuous matrix valued function on K, then we can find some K such that $A(y)X \leq K|X|$ for all $y \in K$ and $X \in \mathbb{R}^n$.

3. Let U be an open disk in \mathbb{R}^n , and let $f: U \to \mathbb{R}^m$ be a smooth function (continuous partial derivatives of all orders for all coordinates). If C is a convex compact subset of U, prove that there is a constant K such that $|f(y) - f(x)| \leq K \cdot |y - x|$ for all $y, x \in K$. [*Hint:* Write g(t) = f(ty + (1 - t)x) for $t \in [0, 1]$; this makes sense because K is convex. Now apply the Fundamental Theorem of Calculus and the preceding exercise.]

1. Smooth manifolds

Lee, 1.17, 1.18, 1.20, 1-2, 1-4, 1-6, 1-12 (for topological manifolds only)

Additional exercises

1. Let X be a Hausdorff space, and suppose that X has an open covering $\{U_{\alpha}\}$ such that each U_{α} is a topological *n*-manifold for some fixed *n*. Prove that X is a topological manifold. Explain why this statement becomes false if the Hausdorff condition is removed.

2. A compact Hausdorff space Γ is a graph if it is a finite union of subspaces E_j such that each E_j is homeomorphic to the closed unit interval [0,1] and if $i \neq j$ then $E_i \cap E_j$ is an endpoint of both E_i and E_j (note that one can characterize the endpoints topologically as the two points whose complements are connected). The set of endpoints of the subsets E_k is called the set of vertices of Γ and each E_k is called an edge of Γ . Prove that if Γ is a topological manifold, then every vertex lies on exactly two edges. [*Hint:* Look at the proof that the figure 8 curve is not a topological manifold.]

3. In the notation of the previous exercise, it follows that if one removes a finite set of points from Γ , then Γ is a topological 1-manifold. All letters in the alphabet and all Hindu-Arabic numerals admit decompositions into closed subspaces which make them into graphs. Assuming that the letters and numerals are given in the sans-serif form

determine the least numbers of points that must be removed in order to obtain a topological 1-manifold.

4. Suppose that we are given two smooth *n*-manifolds M and N such that there is a diffeomorphism Φ from an open subset $U \subset M$ to an open subset $V \subset N$. Then we can form the quotient space $P = M \cup_{\Phi} N$, which is given by $M \amalg N$ modulo the equivalence relation generated by $x \equiv \Phi(x)$ for all $x \in U$. Assume that this space P is Hausdorff.

If \mathcal{A} and \mathcal{B} are maximal smooth atlases for M and N, let \mathcal{F} be the corresponding family of local charts for P corresponding to \mathcal{A} and \mathcal{B} . Prove that \mathcal{F} is a smooth atlas for P. [*Hint:* The main point is to show that a chart in \mathcal{A} is compatible with one in \mathcal{B} and vice versa. Some way or other the diffeomorphism Φ should be relevant to this issue.]

5. Suppose that M is a topological m-manifold without boundary and N is a topological n-manifold with boundary (in the sense of the definition in the lectures!). Prove that the product

 $M \times N$ is a topological (m + n)-manifold with boundary (in the sense of the definition in the lectures) and its boundary is $M \times \partial N$. Explain why the same is true if "topological" is replaced by "smooth" in the preceding discussion.

6. Let ε fun through $\{-1, 1\}$. Prove that the inverses to the mappings $h_{k,\varepsilon} : N_1(0, \mathbb{R}^3) \to S^3$ defined by

$$h_{1,\varepsilon}(x,y,z) = \left(\varepsilon\sqrt{1-x^2-y^2-z^2}, x, y, z\right) , \qquad h_{2,\varepsilon} = \left(x, \varepsilon\sqrt{1-x^2-y^2-z^2}, y, z\right)$$

$$h_{3,\varepsilon}(x,y,z) = \left(x, y, \varepsilon\sqrt{1-x^2-y^2-z^2}, z\right) , \qquad h_{4,\varepsilon} = \left(x, y, z, \varepsilon\sqrt{1-x^2-y^2-z^2}\right)$$

form a smooth atlas for \mathbb{R}^3 . Formulate a more general result of this type to describe a smooth atlas for S^n with 2n + 2 charts.

7. Let \mathcal{U} be an open covering of a smooth manifold M with maximal atlas \mathcal{A} . An smooth atlas \mathcal{A}' is said to be \mathcal{U} -small if the domain of every smooth chart in \mathcal{A}' is contained in some element of \mathcal{U} . Prove that \mathcal{A} contains a \mathcal{U} -small atlas. [*Hint:* What can we say about the restriction of a chart in \mathcal{A} to an open subset?]

2: Smooth maps

Lee, 2.7, 2.16, 2 - 10 ("if" direction only for part (c))

Additional exercises

1. Let M be a smooth manifold and let $f, g: M \to \mathbb{R}$ be smooth functions. prove that f + g and fg are also smooth functions. Also, if f is never zero prove that 1/f is a smooth function. State and prove similar results for vector operations on vector valued functions, including the cross product on \mathbb{R}^3 . [*Hint:* You may assume these are known if M is an open subset in some \mathbb{R}^n .]

2. As noted in the lectures, there are two definitions of a smooth homotopy between two smooth maps $f, g: M \to N$.

- (1) For some $\varepsilon > 0$ there is a smooth map $h: M \times (-\varepsilon, 1+\varepsilon) \to N$ such that $h|M \times \{0\} = f$ and $h|M \times \{1\} = g$.
- (2) For some $\varepsilon > 0$ there is a smooth map $h: M \times (0,1) \to N$ such that $h|M \times \{t\} = f$ for $t < \varepsilon$ and $h|M \times \{t\} = g$ for $t > 1 \varepsilon$.

Prove that these definitions are equivalent.

3. Suppose that $f: M \to M'$ and $g: N \to N'$ are smooth maps of smooth manifolds. Prove that the product map $f \times g$ is also a smooth map if $M \times N$ and $M' \times N'$ are given the product smooth structures. Furthermore, prove that if f and g are diffeomorphisms then so is $f \times g$. [*Hint:* A map into a product is smooth if and only if its coordinate projections are smooth.]

4. Suppose that M is a smooth manifold. Prove that the following maps are diffeomorphisms:

(a) The twist map from $M \times M$ to itself which sends (x, y) to (y, x).

(b) The cyclic coordinate permutaion map from $M \times M \times M$ to itself which sends (x, y, z) to (y, z, x).

(c) The middle four shuffle from $M \times M \times M \times M$ to itself which sends (x, y, z.w) to (x, z, y, w).

[*Hints:* Recall the hint in the previous exercise, and observe that if f is any of the maps given above, then some iterated composite of f with itself is the identity. Why does this imply that some other iterated composite of f with itself is an inverse?]

5. Let $f: M \to N$ be a smooth map of smooth manifolds, let $p: E \to N$ be a covering space projection, take the smooth structure on E induced by p, and let $F: M \to E$ be a continuous lifting of f. Prove that F is also smooth.

6. Let $p: \mathbb{R} \to S^1$ be the usual covering space projection $p(t) = (\cos t, \sin t)$, let M be a smooth manifold, let $\gamma: \mathbb{R} \to M$ be a periodic smooth curve satisfying $\gamma(t+n) = \gamma(t)$ for all real numbers t and integers n, and let $\gamma^*: S^1 \to M$ be the unique continuous function such that $p \circ \gamma^* = \gamma$. Prove that γ^* is also smooth.