EXERCISES FOR MATHEMATICS 205A

SPRING 2016 — Part 2

The headings denote chapters of the text for the course:

J. Lee, Introduction to Smooth Manifolds (Second Edition), Springer-Verlag, 2012.

Exercises which appear throughout the text are numbered in the form m.n, and exercises at the end of the chapters are numbered in the form m-n. Except when explicitly noted otherwise, it will suffice to prove exercises for manifolds without boundary.

3. Tangent spaces

RECOMMENDATION. Use the approach to constructing the tangent space described in the lectures and the document **amalgamation.pdf**. However, note that coordinate charts in that document are defined as maps from open subsets in \mathbb{R}^n into a manifold M, while in Lee and this course we have defined coordinate charts as maps from open sets in M to open sets in \mathbb{R}^n . The relationship between the two formulations is that the maps in Lee are inverses to the maps in **amalgamation.pdf**.

Lee, 3 - 3, 3 - 4, 3 - 5

Additional exercises

- **0.** Prove the following statements; each is an immediate consequence of previous exercises.
 - (a) If M is a smooth submanifold of N and N is a smooth submanifold of P, then M is a smooth submanifold of P.
 - (b) If P is a smooth submanifold of M and Q is a smooth submanifold of N, then $P \times Q$ is a smooth submanifold of $M \times N$.

1. Suppose that $f: M \to N$ is a smooth homeomorphism. Prove that f is a diffeomorphism if and only if T(f) is 1–1 and onto.

2. One can construct the Klein bottle KB using two smooth charts (U_i, h_i) for i = 1, 2 where $U_1 = U_2 = \mathbb{R}^2 - \{0\}$ such that the overlapping images are given by $V_{21} = V_{12} = \{z \mid |z| < \frac{1}{2} \text{ or } |z| > 2\}$ and the transition diffeomorphisms ψ_{ij} are both given by $\psi_{ij}(x, y) = (x, y)$ if $\sqrt{x^2 + y^2} > 2$ and $\psi_{ij}(x, y) = (x, -y)$ if $\sqrt{x^2 + y^2} < \frac{1}{2}$ What are the domains of the charts for the corresponding smooth atlas of the tangent space T(KB), and what is the corresponding transition map for these charts?

3. A smooth curve γ from an open interval (a, b) to a smooth manifold M is said to be regular if its tangent vector at every point is nonzero, and a continuous curve γ from (a, b) to M is said to be regularly piecewise smooth if one can find a partition

$$a = s_0 < s_1 < \cdots < s_p = b$$

such that the restrictions of γ to the pieces $(s_0, s_1], [s_1, s_2] \cdots [s_{p-1}, s_p)$ all extend to regular smooth curves on open intervals containing the pieces.

(i) Prove that if M is connected, then every pair of points can be joined by a regular piecewise smooth curve $(-\varepsilon, 1 + \varepsilon)$; *i.e.*, for each $x, y \in M$ one can find such a curve γ so that $\gamma(0) = x$ and $\gamma(1) = y$.

(*ii*) Prove the following strengthening ot (*i*): Every pair of points can be joined by a regular smooth curve. [*Hint:* start with the conclusion of (*i*) and use the construction on the last three pages of nicecurves.pdf to smooth out the corner points.]

4. Assume we are in the setting of Additional Exercise I.4, where we are given two smooth n-manifolds M and N such that there is a diffeomorphism Φ from an open subset $U \subset M$ to an open subset $V \subset N$. Then we can form the quotient space $P = M \cup_{\Phi} N$, which is given by $M \amalg N$ modulo the equivalence relation generated by $x \equiv \Phi(x)$ for all $x \in U$. If this space P is Hausdorff, then the cited exercise yields a smooth structure on P which contains open subsets diffeomorphic to M and N.

Prove that the space $T(M) \cup_{T(\Phi)} T(N)$ is Hausdorff, and with the smooth structure on it given in the earlier exercise it is diffeomorphic to T(P).

5. Let M be a smooth manifold, let $p: E \to M$ be a Hausdorff covering space projection, and take the smooth structure on E given in the lectures. Prove that $T(p): T(E) \to T(M)$ is also a smooth covering space projection of the same type, and if $h: M \to M$ is a covering space (deck) transformation then so is T(h).

4: Mersions and embeddings

CONVENTION. The word mersion refers to a map which is either an immersion or a submersion. There is also a related concept of k-mersion, which is a smooth mapping $f: M \to N$ such that for each $x \in M$ the tangent space mapping $T(f)_x: T_x(M) \to T_{f(x)}(N)$ has constant rank k.

Lee, 4.10, 4.38, 4-6, 4-8, 4-12, 4-13

Additional exercises

- 1. (i) Prove that the composite of two smooth immersions is a smooth immersion.
 - (*ii*) Prove that the composite of two smooth submersions is a smooth submersion.

(*iii*) Prove that the composite of two smooth embeddings is a smooth embedding.

2. Let $f: M \to M'$ and $g: N \to N'$ be smooth mappings.

(i) Prove that if f and g are immersions then so is $f \times g : M \times N \to M' \times N'$.

(ii) Prove that if f and g are submersions then so is $f \times g : M \times N \to M' \times N'$.

(*iii*) Prove that if f and g are smooth embeddings then so is $f \times g : M \times N \to M' \times N'$.

3. Let X be the y-axis in the Cartesian plane, and let Y be the graph of $\sin \frac{1}{x}$ for x > 0. Prove that the map $X \amalg Y \to \mathbb{R}^2$ is an immersion but not an embedding; also show that the restrictions to the two pieces are embeddings.

4. Prove that there is no immersion from a compact *n*-manifold into \mathbb{R}^n .

5. Prove that there is no submersion from a compact *n*-manifold into \mathbb{R} . [*Hint:* Such a map attains a maximum value. What does this mean if we look at a smooth chart at a point where the maximum is attained?]

Note. If M is connected and noncompact, then one can always construct a smooth submersion $M \to \mathbb{R}$.

6. Given an immersion from a 1-connected compact smooth manifold to a smooth manifold of the same dimension, prove that it is a covering space projection. Does the statement remain true if the manifolds are not necessarily compact? Prove this or give a counterexample.

7. Let U and V be open in \mathbb{R}^n , let $f: U \to V$ be a smooth surjective immersion/submersion, and suppose that $g: V \to \mathbb{R}^q$ is a continuous map such that $g \circ f$ is smooth. Prove that g is also smooth.

8. A continuous map $f : A \to X$ is a *retract* if there is a continuous map $g : X \to A$ such that $g \circ f = id_A$. Suppose that A and X smooth manifolds and f and g are smooth. Prove that f is an immersion.

9. Suppose that M is a noncompact smooth manifold and there is a smooth 1–1 immersion $f: M \to \mathbb{R}^N$. Prove that there is a smooth embedding $g: M \to \mathbb{R}^{N+1}$ such that g[M] is a closed subset. [*Hint:* Recall that there is a proper map from M to \mathbb{R} .]

10. (i) Suppose that M and N are smooth manifolds. A smooth map $f: M \to N$ is said to be a *retract* if there is a smooth map $g: N \to M$ such that $g \circ f = id_M$. Prove that a smooth retract is a smooth immersion.

(*ii*) A smooth map of smooth manifolds $r: N \to M$ is said to be a smooth *retraction* if there is a smooth map $j: M \to N$ such that $r \circ j = \operatorname{id}_M$. Prove that if r is a retraction, then the restriction of r to some neighborhood of j(M) is a submersion.

(*iii*) A continuous map of topological spaces is said to be a continuous retract if it satisfies the condition in (*i*). Prove that if A and X are Hausdorff then j is a closed mapping. Why does this imply that j maps A homeomorphically onto its image? [*Hint:* To see that A is closed, show that it is the set of all points such that $x = j \circ r(x)$.]

11. Let $z: M \to T(M)$ be the map which sends each point $x \in M$ to the zero vector in the tangent space $T_x(M)$. Prove that z is a smooth embedding. [*Hint:* What does z look like in local coordinates, and why is $\tau_m \circ z$ the identity?]

12. Let $z : M \to T(M)$ be given as in the previous exercise. Prove that z[M] is a strong deformation retract of T(M) and τ_M is an associated deformation retraction.

13. Let n_1, \dots, n_k be positive integers and let N be their sum. Prove that there is a smooth embedding of $\prod_j S^{n_j}$ into S^{N+1} . [*Hint:* One always has smooth embeddings of $S^p \times \mathbb{R}^q$ in \mathbb{R}^{p+q} and embeddings of $S^{q-1} \times \mathbb{R}$ in \mathbb{R}^q . Use these as part of an inductive argument.]

14. Suppose we have smooth maps $i : M \to N$ and $j : N \to L$ such that $j \circ i$ is a smooth embedding. Prove that i is a smooth embedding.

15. Suppose that M is a connected smooth manifold and $f: M \to N$ is a smooth immersion. Prove that the diagonal Δ_M is a connected component of $(f \times f)^{-1} [\Delta_N]$. [*Hint:* Recall that f is locally 1–1.]

5: Smooth submanifolds

Lee, 5-1, 5-3, 5-6, 5-7, 5-10, 5-11, 5-17, 5-19 (but disregard the last sentence)

Additional exercises

1. Suppose that U is open in \mathbb{R}^n and that $f: U \to \mathbb{R}^n$ and $g: U \to \mathbb{R}^m$ are smooth functions where m < n. Let $x \in U$ be a point on the level set L on which g(x) = 0, and suppose that Dg(x)has rank $m \implies$ if we restrict to a suitable open neighborhood V of x in U, the set $L \cap V$ is a smooth submanifold of dimension n - m.

(i) Suppose that f|L has a local maximum at x. Prove that $\nabla f(x)$ is perpendicular to the tangent space $T_x(L)$. [*Hint:* What can we say about D[f|L](x) under the given hypothesis?]

(*ii*) If the coordinates of g are given by g_j (where $1 \le j \le m$), explain why the orthogonal complement of $T_x(L)$ is spanned by the vectors $\nabla g_j(x)$.

(*iii*) Using the preceding parts of this exercise, derive the **Lagrange Multiplier Rule**: One can find *m* constants (or Lagrange multipliers) λ_j such that $\nabla f(x) = -\sum_j \nabla g_j(x)$ or equivalently x (and the λ_j 's) determine a solution to the following system of equations:

$$abla \left(f + \sum_{j} \lambda_{j} g_{j} \right) = \mathbf{0} \quad \text{AND} \quad g(x) = 0$$

Note that this is a system of m + n scalar equations in the *n* coordinates of *x* and the *m* multipliers λ_j .

2. Let $Q \subset \mathbb{R}^{n+1}$ be the unit cube consisting of all (x_0, \dots, x_n) such that $\max_i |x_i| = 1$. Prove that Q is homeomorphic to S^n , that Q has a smooth atlas for which Q is diffeomorphic to S^n , but Q is not a smooth submanifold of \mathbb{R}^{n+1} .

3. Let X be the y-axis in the Cartesian plane, and let Y be the graph of $\sin \frac{1}{x}$ for x > 0. Prove that $X \cup Y$ is an immersed but not embedded submanifold but that each of X and Y taken separately is an embedded submanifold.

4. Let A be a real nonsingular symmetric $n \times n$ matrix and let c be a nonzero real number. Show that the quadric hypersurface defined by the equation $\langle Ax, x \rangle = c$ is a smooth (n-1)-dimensional submanifold of \mathbb{R}^n .

5. Let M be a noncompact smooth manifold. Prove that there is a smooth embedding $f: (-\varepsilon, \infty) \to M$ such that the image of $[0, \infty)$ is a closed subset.

6. (i) Let V the set of points $(x, y, z) \in \mathbb{R}^3$ satisfying the equations x + y + z = 0 and xyz = 2, and let A be the three point set consisting of (2, -1, -1), (-1, 2, -1) and (-1, -1, 2). Prove that V - A is a smooth submanifold of \mathbb{R}^3 .

(*ii*) Let V be the set of points $(x, y, z) \in \mathbb{R}^3$ satisfying the equations $x^2 + 2xz - 2yz + z^2 = 0$ and 2x - y + z = 3. Prove that V is a smooth submanifold of \mathbb{R}^3 .

7. Show that it is possible to make the subset of the plane defined by the equation $x^3 - y^2 = 0$ into a smooth manifold but that the set in question is not a smooth submanifold of \mathbb{R}^2 . What happens for the set $x^4 - y^2 = 0$?

8. Let $f: S^2 \to \mathbb{R}^4$ be the smooth map sending (x, y, z) to $(x^2 - y^2, xy, xz, yz)$. Show that f(x, y, z) = f(-x, -y, -z) for all (x, y, z) and that the associated map $g: \mathbb{RP}^2 \to \mathbb{R}^4$ on the quotient manifold is a smooth embedding.

9. Let $A \subset \mathbb{R}^2$ be the graph of the function f(t) = |t|. Prove that A is a topologically locally flat submanifold of \mathbb{R}^2 but not a smooth submanifold. [*Hints:* Construct a homeomorphism from \mathbb{R}^2 to itself that sends A to the x-axis. To show A is not a smooth submanifold, derive a contradiction by finding two candidates for the tangent space at the origin.]

10. Consider the set $LF_{n,k}$ of labeled flexible *n*-gons in \mathbb{R}^k . These are the figures obtained by joining n > 2 straight line segments of unit length into a closed curve.

(i) Suppose that n is odd and k = 2. Prove that $LF_{n,2}$ is a smooth submanifold of $\mathbb{R}^2 \times T^{n-1}$ whose dimension is equal to n.

(ii) Prove that the set of all such objects with no self-intersections is a smooth manifold.

Exercises involving real projective spaces

We shall take the construction in Example 1.5 of Lee's book (see p. 6) as the basic definition for the *n*-dimensional real projective space \mathbb{RP}^n . As indicated in the hint for Exercise 1.7 on p. 7, if the quotient map $\mathbb{R}^{n+1} - \{\mathbf{0}\} \to \mathbb{RP}^n$ is denoted by π , then $\pi | S^n$ is surjective, and in fact it follows that we can view \mathbb{RP}^n as the quotient of S^n by the equivalence relation $x \equiv y \iff x = \pm y$. If we view \mathbb{RP}^n in this way, there is a natural atlas given in terms of Examples 1.4 and 1.5 as follows: Let $\Omega_i \subset \mathbb{R}^{n+1} - \{\mathbf{0}\}$ be the set of points where the *i*th coordinate is nonzero (this is called \widetilde{U}_i in Lee), and let $U_i^+ \subset S^n$ and $U_i \subset \mathbb{RP}^n$ be the open subsets described on p. 5 of Lee. It follows that the images of these two sets in \mathbb{RP}^n are equal to the same open subset, and it also follows that the charts given by the inverses to the mappings

$$N_1(\mathbf{0},\mathbb{R}^n) \longrightarrow U_i^+ \longrightarrow U_i \longrightarrow \mathbb{R}\mathbb{P}^n$$

form a compatible smooth atlas. The verification of this is straightforward (the user should be able to do this!), but it is a little messy.

Note that $S^n - \Omega_i$ is equal to $U_i^+ \cup U_i^-$ (where the two pieces are disjoint) and that the antipodal map $T: S^n \to S^n$ sending x to -x sends each of these subsets to the other.

11. (i) Explain why the antipodal map is a diffeomorphism fropm S^2 to itself, and if $\pi: S^n \to \mathbb{RP}^n$ is the quotient map then $\pi \circ T = \pi$. [*Hint:* T^2 = identity implies that $T = T^{-1}$.]

(*ii*) Let Q be a smooth manifold. Using the preceding material and discussion, explain why a map $f : \mathbb{RP}^n \to Q$ is smooth if and only if $f \circ \pi$ is smooth.

12. Let $f: S^2 \to \mathbb{R}^4$ be the smooth map sending (x, y, z) to $(x^2 - y^2, xy, xz, yz)$. Show that f(x, y, z) = f(-x, -y, -z) for all (x, y, z) and that the associated map $g: \mathbb{RP}^2 \to \mathbb{R}^4$ on the quotient manifold is a smooth embedding. [Note: There is no smooth embedding $\mathbb{RP}^2 \to \mathbb{R}^3$.]

13. Let $p(x_1, \dots, x_{n+1})$ be a homogeneous polynomial of degree d with real coefficients, so that we have the following identity:

$$p(cx_1, \cdots, cx_{n+1}) = c^d \cdot p(x_1, \cdots, x_{n+1})$$
, for all c, x_j

(i) Suppose that (x_1, \dots, x_{n+1}) and (y_1, \dots, y_{n+1}) determine the same point of \mathbb{RP}^n . Explain why $p(x_1, \dots, x_{n+1}) = 0$ if and only if $p(y_1, \dots, y_{n+1}) = 0$, so that it is meaningful to discuss the projective zero set $\mathbb{P}V(p)$ of p in \mathbb{RP}^n .

(*ii*) Let V(p) be the zero set of p in \mathbb{R}^{n+1} , so that the inverse image of $\mathbb{P}V(p)$ is $V(p) - \{\mathbf{0}\}$. Prove that if the derivative Dp is nonzero at every point of V(p), then $\mathbb{P}V(p)$ is a smooth compact (n-1)-dimensional smooth submanifold of \mathbb{RP}^n . [*Hints:* Why is $\mathbb{P}V(p)$ a closed subset, and why does it suffice to show that the intersection with each U_i is a smooth submanifold?]

14. Determine whether the following homogeneous polynomial equations define smooth submanifolds of \mathbb{RP}^n :

(i) $x_1x_2x_3 - x_4^3 = 0$, where n = 3.

(*ii*) $x_1^2 + x_2^2 + x_3^2 - x_4^2 = 0$, where n = 3.

(*iii*) $x_1^d + x_2^d + x_3^d + x_4^d = 0$, where d > 1 is an odd integer and n = 3.

(*iv*) $x_1^3 - x_1 x_3^2 - x_2^2 x_3 = 0$, where n = 2.

[*Hint:* It might be helpful to look over each U_i separately and restrict to the sets where the i^{th} homogeneous coordinate is equal to 1.]

6: Approximation and embedding theorems

Lee, 6 - 1, 6 - 3, 6 - 16abce

Additional exercises

1. For each of the statements below, either prove that it is true or give a counterexample to show it is false.

- (a) If M is a smooth manifold and $A \subset M$ is a set of measure zero, then the closure $\overline{A} \subset M$ also has measure zero.
- (b) If M is a smooth manifold with $B \subset A \subset M$ and A has measure zero, then B also has measure zero.

2. Sard's Theorem implies that if $f: M \to N$ is smooth and dim $M < \dim N$, then $f[M] \subset N$ has measure zero. This exercise considers the possibilities if the dimensions are equal.

(i) Show that there are examples of smooth maps $f: M \to N$ such that dim $M = \dim N$ and $f[M] \subset N$ has measure zero.

(*ii*) Suppose that $f: M \to N$ is smooth such that dim $M = \dim N$. Prove that $f[M] \subset N$ has measure zero if and only if for each $x \in M$, the linear map of tangent spaces $T_x(f): T_x(M) \to T_{f(x)}(N)$ is not invertible.

3. (i) Suppose that dim M < n, where M is a compact smooth manifold, and let $f : M \to S^n$ be continuous. Prove that f is homotopic to a constant map. [*Hints:* First approximate f by a smooth map g which is homotopic to f; this can be done by choosing $\varepsilon > 0$ sufficiently small. Use Sard's Theorem to show that f is not onto, so that the image lies in $s^n - \{\mathbf{p}\}$ for some \mathbf{p} . Why does this imply that g is homotopic to a constant?]

(*ii*) Give an example to show that a similar conclusion does not hold if we replace S^n with some other compact smooth *n*-manifold (*i.e.*, find N^n and M so that dim M < n and find a map $f: M \to N$ which is not homotopic to a constant).