EXERCISES FOR MATHEMATICS 205A

SPRING 2016 — Part 2

The headings denote chapters of the text for the course:

J. Lee, Introduction to Smooth Manifolds (Second Edition), Springer-Verlag, 2012.

Exercises which appear throughout the text are numbered in the form m.n, and exercises at the end of the chapters are numbered in the form m-n. Except when explicitly noted otherwise, it will suffice to prove exercises for manifolds without boundary.

3. Tangent spaces

RECOMMENDATION. Use the approach to constructing the tangent space described in the lectures and the document **amalgamation.pdf**. However, note that coordinate charts in that document are defined as maps from open subsets in \mathbb{R}^n into a manifold M, while in Lee and this course we have defined coordinate charts as maps from open sets in M to open sets in \mathbb{R}^n . The relationship between the two formulations is that the maps in Lee are inverses to the maps in **amalgamation.pdf**.

Lee, 3 - 3, 3 - 4, 3 - 5

Additional exercises

1. Suppose that $f: M \to N$ is a smooth homeomorphism. Prove that f is a diffeomorphism if and only if T(f) is 1–1 and onto.

2. One can construct the Klein bottle KB using two smooth charts (U_i, h_i) for i = 1, 2 where $U_1 = U_2 = \mathbf{R}^2 - \{0\}$ such that the overlapping images are given by $V_{21} = V_{12} = \{z \mid |z| < \frac{1}{2} \text{ or } |z| > 2\}$ and the transition diffeomorphisms ψ_{ij} are both given by $\psi_{ij}(x, y) = (x, y)$ if $\sqrt{x^2 + y^2} > 2$ and $\psi_{ij}(x, y) = (x, -y)$ if $\sqrt{x^2 + y^2} < \frac{1}{2}$ What are the domains of the charts for the corresponding smooth atlas of the tangent space T(KB), and what is the corresponding transition map for these charts?

3. A smooth curve γ from an open interval (a, b) to a smooth manifold M is said to be regular if its tangent vector at every point is nonzero, and a continuous curve γ from (a, b) to M is said to be regularly piecewise smooth if one can find a partition

$$a = s_0 < s_1 < \cdots < s_p = b$$

such that the restrictions of γ to the pieces $(s_0, s_1], [s_1, s_2] \cdots [s_{p-1}, s_p)$ all extend to regular smooth curves on open intervals containing the pieces.

(i) Prove that if M is connected, then every pair of points can be joined by a regular piecewise smooth curve $(-\varepsilon, 1 + \varepsilon)$; *i.e.*, for each $x, y \in M$ one can find such a curve γ so that $\gamma(0) = x$ and $\gamma(1) = y$.

(*ii*) Prove the following strengthening ot (*i*): Every pair of points can be joined by a regular smooth curve. [*Hint:* start with the conclusion of (*i*) and use the construction on the last three pages of nicecurves.pdf to smooth out the corner points.]

4. Assume we are in the setting of Additional Exercise I.4, where we are given two smooth n-manifolds M and N such that there is a diffeomorphism Φ from an open subset $U \subset M$ to an open subset $V \subset N$. Then we can form the quotient space $P = M \cup_{\Phi} N$, which is given by $M \amalg N$ modulo the equivalence relation generated by $x \equiv \Phi(x)$ for all $x \in U$. If this space P is Hausdorff, then the cited exercise yields a smooth structure on P which contains open subsets diffeomorphic to M and N.

Prove that the space $T(M) \cup_{T(\Phi)} T(N)$ is Hausdorff, and with the smooth structure on it given in the earlier exercise it is diffeomorphic to T(P).

5. Let M be a smooth manifold, let $p: E \to M$ be a Hausdorff covering space projection, and take the smooth structure on E given in the lectures. Prove that $T(p): T(E) \to T(M)$ is also a smooth covering space projection of the same type, and if $h: M \to M$ is a covering space (deck) transformation then so is T(h).

4: Mersions and embeddings

CONVENTION. The word mersion refers to a map which is either an immersion or a submersion. There is also a related concept of k-mersion, which is a smooth mapping $f: M \to N$ such that for each $x \in M$ the tangent space mapping $T(f)_x: T_x(M) \to T_{f(x)}(N)$ has constant rank k.

Lee, 4.10, 4.38, 4 - 6, 4 - 8, 4 - 12, 4 - 13

Additional exercises

1. (i) Prove that the composite of two smooth immersions is a smooth immerson.

(*ii*) Prove that the composite of two smooth submersions is a smooth submersion.

(*iii*) Prove that the composite of two smooth embeddings is a smooth embedding.

2. Let $f: M \to M'$ and $g: N \to N'$ be smooth mappings.

(i) Prove that if f and g are immersions then so is $f \times g : M \times N \to M' \times N'$.

(ii) Prove that if f and g are submersions then so is $f \times g : M \times N \to M' \times N'$.

(*iii*) Prove that if f and g are smooth embeddings then so is $f \times g : M \times N \to M' \times N'$.

3. Let X be the y-axis in the Cartesian plane, and let Y be the graph of $\sin \frac{1}{x}$ for x > 0. Prove that the map $X \amalg Y \to \mathbb{R}^2$ is an immersion but not an embedding; also show that the restrictions to the two pieces are embeddings.

4. Prove that there is no immersion from a compact *n*-manifold into \mathbb{R}^n .

5. Prove that there is no submersion from a compact *n*-manifold into \mathbb{R} . [*Hint:* Such a map attains a maximum value. What does this mean if we look at a smooth chart at a point where the maximum is attained?]

Note. If M is connected and noncompact, then one can always construct a smooth submersion $M \to \mathbb{R}$.

6. Given an immersion from a 1-connected compact smooth manifold to a smooth manifold of the same dimension, prove that it is a covering space projection. Does the statement remain true if the manifolds are not necessarily compact? Prove this or give a counterexample.

7. Let U and V be open in \mathbb{R}^n , let $f: U \to V$ be a smooth surjective immersion/submersion, and suppose that $g: V \to \mathbb{R}^q$ is a continuous map such that $g \circ f$ is smooth. Prove that g is also smooth.

8. A continuous map $f : A \to X$ is a *retract* if there is a continuous map $g : X \to A$ such that $g \circ f = id_A$. Suppose that A and X smooth manifolds and f and g are smooth. Prove that f is an immersion.

9. Suppose that M is a noncompact smooth manifold and there is a smooth 1–1 immersion $f: M \to \mathbb{R}^N$. Prove that there is a smooth embedding $g: M \to \mathbb{R}^{N+1}$ such that g[M] is a closed subset. [*Hint:* Recall that there is a proper map from M to \mathbb{R} .]

10. (*i*) Suppose that M and N are smooth manifolds. A smooth map $f: M \to N$ is said to be a *retract* if there is a smooth map $g: N \to M$ such that $g \circ f = id_M$. Prove that a smooth retract is a smooth immersion.

(*ii*) A smooth map of smooth manifolds $r: N \to M$ is said to be a smooth *retraction* if there is a smooth map $j: M \to N$ such that $r \circ j = id_M$. Prove that if r is a retraction, then the restriction of r to some neighborhood of j(M) is a submersion.

(*iii*) A continuous map of topological spaces is said to be a continuous retract if it satisfies the condition in (*i*). Prove that if A and X are Hausdorff then j is a closed mapping. Why does this imply that j maps A homeomorphically onto its image? [*Hint:* To see that A is closed, show that it is the set of all points such that $x = j \circ r(x)$.]

11. Let $z: M \to T(M)$ be the map which sends each point $x \in M$ to the zero vector in the tangent space $T_x(M)$. Prove that z is a smooth embedding. [*Hint:* What does z look like in local coordinates, and why is $\tau_m \circ z$ the identity?]

12. Let $z: M \to T(M)$ be given as in the previous exercise. Prove that z[M] is a strong deformation retract of T(M) and τ_M is an associated deformation retraction.

13. Let n_1, \dots, n_k be positive integers and let N be their sum. Prove that there is a smooth embedding of $\prod_j S^{n_j}$ into S^{N+1} . [*Hint:* One always has smooth embeddings of $S^p \times \mathbb{R}^q$ in \mathbb{R}^{p+q} and embeddings of $S^{q-1} \times \mathbb{R}$ in \mathbb{R}^q . Use these as part of an inductive argument.]

14. Suppose we have smooth maps $i: M \to N$ and $j: N \to L$ such that $j \circ i$ is a smooth embedding. Prove that i is a smooth embedding.

5: Smooth submanifolds

Lee, 5 - 1, 5 - 3, 5 - 6, 5 - 7

Additional exercises

1.