
EXERCISES FOR MATHEMATICS 205C

SPRING 2016 — Part 3

The headings denote chapters of the text for the course:

J. Lee, Introduction to Smooth Manifolds (Second Edition), Springer-Verlag, 2012.

Exercises which appear throughout the text are numbered in the form m.n, and exercises at the
end of the chapters are numbered in the form m − n. Except when explicitly noted otherwise, it
will suffice to prove exercises for manifolds without boundary.

7 . Lie groups

Lee, 7 − 1 — 7 − 5, 7 − 14, 7 − 17, 7 − 20, 7 − 21, 7 − 24

Additional exercises

1. We have defined the affine group Aff(Rn) to be the semidirect product of GL(n,R) and R
n

(as an additive abelian Lie group) with twisting homomorphism GL(n,R) → Aut(Rn) given by the
action of GL(n,R) on R

n by invertible linear transformations.

(a) Prove that the affine group is isomorphic to the subgroup of GL(n+ 1,R) consisting of all
matrices having the form

(

A b

0 1

)

where A ∈ GL(n,R) and b ∈ R
n (hence the bottom blocks have only one row). Also, prove that

this subgroup is a closed Lie subgroup of GL(n + 1,R). [Hint: Show that the matrix group in
question is the zero set of some smooth function f into R

n+1 and that Df(In+1) has maximum
rank, where Ik is the identity k × k matrix.]

(b) Prove that the Galilean group is the closed Lie subgroup of all (n+ 1) × (n+ 1) matrices
as above such that A is an orthogonal matrix.

2. Let n ≥ 2 be an integer. The conformal linear group Confn is the set of all matrices
A ∈ GL(n,R) such that A preserves the angles between nonzero vectors. Equivalently, this group
is defined by the identity

〈Ax, Ay〉

|Ax| |Ay|
=

〈x, y〉

|x| |y|

for each pair of nonzero vectors x, y ∈ R
n.

(a) Prove that A ∈ Confn if and only if A = rB where r > 0. [Hint: The (⇐) direction is
very straightforward. To prove the (⇒) implication, consider the Gram matrix TAA, whose entries
are the inner products of the columns of A. Why is this product a diagonal matrix with positive
entries down the diagonal? Using the perpendicularity of the vectors ei + ej and ei − ej (for all
i 6= j) and the fact that A is conformal, conclude that all the diagonal entries of TAA are equal to
some positive number c. Why is B = c−1/2 A an orthogonal matrix?]
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(b) Prove that the map h : R×On → GL(n,R) sending (t, A) to et A is a proper (hence closed)
smooth embedding whose image is equal to Confn. In particular, this implies that the group Confn

has a natural Lie group structure.

3. The purpose of this exercise is to determine the numbers of connected components for each
of the groups GL(n,R), GL(n,C), O(n) [the group of orthogonal n × n matrices, and U(n) [the
group of unitary n× n matrices.

(a) Let A and P be matrices in any one of these groups. Prove that A lies in the arc component
of the identity if and only if PAP−1 does. [Hint: Suppose that A(t) is a curve joining A to I, and
consider PA(t)P−1.

(b) Prove that A ∈ GL(n,R) lies in the (arc) component of the identity if and only if its
determinant is positive. [Hints: Since det is an onto continuous function into R − {0} and the
latter has two components, a matrix with negative determinant cannot lie in the component of
the identity. Suppose henceforth that the determinant of A is positive. Express A as a product
of elementary matrices P1 · · · Pk (for convenience, we expand the definition so that I is also an
elementary matrix). If we are given a product B of elementary matrices Q1 · · · Qk such that, for
each i, the matrices Pi and Qi lie in the same arc component of GL(n,R), explain why A and B

lie in the same arc component of GL(n,R). Now consider the various types of elementary matrices
obtained from the identity by the operations (0) do nothing, (1) multiply a row by a positive
constant, (2) multiply a row by −1, (3) add a multiple of one row to another, (4) interchange two
rows. Why do elementary matrices of types (0), (1), (3) in the arc component of the identity matrix.
Next, consider the following 2 × 2 matrix identity:

(

0 −1
1 0

)

=

(

0 1
1 0

)

·

(

1 0
0 −1

)

The left hand side represents a counterclockwise rotation through 90◦ and hence lies in the arc
component of the identity; in fact, this is true if we replace GL(n,R) by O(n). Why does this
imply that the two factors on the right lie in the same component of GL(n,R)? Use the preceding
observations to show that every invertible matrix lies in the same arc component as a product of
elementary matrices of types (0) and (2)? Recall that if I2 is the 2 × 2 identity matrix, then −I2
is rotation through 180◦ and hence lies in the identity component of O(2). Finally, if detA > 0
then the preceding shows that A lies in the same arc component as a product of an even number of
elementary matrices having type (2). Why does this imply that A lies in the same arc component
as the identity?]

(c) An orthogonal matrix has determinant ± 1. Prove that an orthogonal matrix A lies in the
identity component of O(n) if and only if detA = 1. [Hints: By Appendix D in the document

http://math.ucr.edu/∼res/math205A-2014/gentop-notes.pdf

every orthogonal matrix A is expressible as PBP−1 where P is an orthogonal matrix and B is
a block sum of of 1 × 1 and 2 × 2 orthogonal matrices, so by (a) it suffices to prove the result
for such block sums. One can check directly from the description of orthogonal 2 × 2 matrices in
the preceding document that O(2) has precisely two components and the identity component is
the subgroup with determinant 1; note that the latter consists of the rotation matrices. Now note
that if B is a block sum of the small matrices Bi and Ci is a comparable set of small orthogonal
matrices with the same sizes, then the block sum C lies in the same arc component as B if we have
detBi = detCi for all i. Why does this imply that B lies in the arc component of an orthogonal
matrix which is diagonal with entries ± 1? Finally, if detA = 1 then there must be an even number
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of negative diagonal terms. Why does this imply that A lies in the same arc component as the
identity?]

(d) Prove that GL(n,C) is connected. [Hints: Why does it suffice to prove this for matrices
in Jordan form? Recall that the multiplicative group C−{0} is connected and the diagonal entries
of an invertible matrix in Jordan form are all nonzero.]

(d) Prove that U(n) is connected. [Hints: By the Spectral Theorem, if A is a unitary matrix
then there is another unitary matrix P such that A is expressible as PBP −1 where B is a diagonal
matrix whose nonzero entries all lie in S1.]

4. The following exercise uses the definition and elementary properties of the matrix exponential
map exp, which is defined by the usual power series for the ordinary exponential function ex.
Background information can be found in expmatrix.pdf. — Also, if G is a group and g ∈ G,
then χg will denote the inner automorphism x −→ gxg−1. Note that this automorphism is a
diffeomorphism if G is a Lie group.

If G is a Lie group and L(G) denotes its tangent space, then the adjoint representation is a
homomorphism

adG : G −→ GL (L(G))

given by adG(A) = T (χg)(A) for A ∈ L(G). Suppose that A(t) = exp(tA) and B ∈ L(G), and
consider the smooth curve

γ(t) = χexp(tA)(B) = exp(tA)B exp(−tA) .

Prove that γ′(0) is the commutator [A,B]. — What this means is that the lack of commutativity
of the general linear group is somehow measured by a lack of commutativity in the Lie algebra of
that group. [Hint: Use the power series expansion of exp(tA) and its inverse, and notice that
higher order terms will not affect the answer.]

5. This exercise also uses the matrix exponential map.

(a) Suppose that H ⊂ G is an embedded connected Lie subgroup of G and we have the
associated inclusion of tangent spaces at the identity from L(H) to L(G). Prove that L(H) is a
Lie subalgebra of L(G).

(b) Suppose in addition that H is a normal subgroup. In this case prove that L(H) is a Lie
ideal of L(G); i.e., If B ∈ L(H) and A ∈ L(G), then [A,B] ∈ L(H).

NOTE. Both of these inclusions hold more generally, and in fact there are important partial
converses (these are special cases of Lie’s results).

6. Let SU(n) ⊂ U(n) denote the set of matrices whose determinant is 1.

(a) Prove that SU(n) ⊂ Un is a closed Lie subgroup. [Hint: Imitate the proof for SL(n,R) ⊂
GL(n,R).]

(b) Prove that U(n) ∼= S1 × SU(n) as smooth manifolds but not as Lie groups. [Hint: View
S1 as the diagonal matrices with variable entries in the upper left hand corner. To show that the
map is not a group isomorphism, you may use the following fact: The center of SU(n) is finite.
There is a proof of this result in centers.pdf.]

7. Prove that the 2 × 2 diagonal matrix

C =

(

−2 0
0 −1

)
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does not lie in the image of the exponential map. [Hint: Suppose it did, write C = exp(A), and
consider B = exp

(

1
2 A

)

. Why do we then have B2 = C and CB = BC? Derive a contradiction by
showing that there is no matrix with these properties.]

8. Let H(3) be the Heisenberg group, which consists of the upper triangular 3×3 matrices with
ones down the diagonal. Show that H(3) is a nonabelian Lie group which is diffeomorphic to R

3

(where the group operation is matrix multiplication). More generally, if H(n) is the set of upper
triangular n × n matrices whose diagonal entries are ones and whose remaining entries are zero
except in the first row and last column, prove that H(n) is a nonabelian Lie group with respect to
matrix multiplication and it is diffeomorphic to R

2n−3 as a smooth manifold.

NOTE. Finding examples of compact Lie groups which are diffeomorphic, but not isomorphic as
Lie groups, is considerably more difficult. Examples of this sort are given in Theorem 9.4 from the
following paper:

P. Baum and W. Browder, The cohomology of quotients of classical groups, Topology
3 (1965), 305–336.

9. Let L be a Lie algebra over the real numbers with multiplication denoted by [· · · , · · ·], and
let a ∈ L. Prove that the map Da : L → L defined by Da(x) = [a, x] is a derivation of L. — These
derivations are called inner derivations of the Lie algebra L. [Hint: Use the Jacobi Identity.]

8 . Vector fields

Lee, 8 − 1 — 8 − 3, 8 − 11, 8 − 16, 8 − 19

Additional exercises

1. Suppose that X and Y are smooth vector fields on an open set in some Euclidean space
R

b, and let DX and DY be the corresponding derivations on the ring of smooth functions C∞(M).
Give an example to show that the composite DXDY is not necessarily a derivation.

2. Let X and Y be the vector fields in the plane defined by the vector-valued smooth functions
(x, xy) and (y2, xy) respectively. Compute the Lie bracket [X,Y ].

3. Find the Lie brackets of the following pairs of vector fields on R
2 (we write ∂u for ∂

∂u
to save

space):

(i) x ∂y + y ∂x and x ∂x + y ∂y.

(ii) −y ∂x + x ∂y and y ∂x + x ∂y .

4. In the notation of the preceding exercise, show that if g(x, y) is a smooth function on R
2

such that [g(x, y)∂x, ∂y] is the zero vector field (i.e., the vector fields commute), then g(x, y) is a
function of x alone. [Hint: What conclusion can be drawn if the partial derivative with respect to
one variable is identically zero?]

5. Find the Lie brackets of the following pairs of vector fields on R
3 (as before, let ∂u = ∂

∂u):

(i) y ∂z − 2xy2 ∂y and ∂y.

(ii) x ∂x + y ∂y and x ∂y + y ∂z.

6. Suppose that a smooth function f satisfies [fX, Y ] = f [X,Y ] for all vector fields X and Y .
What can one say about f?
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7. Let X be a vector field on M which is nowhere zero. Prove that the set of all products g ·X
(where g is a smooth function) is a Lie subalgebra of the space of all vector fields; in other words,
it is a C∞(M)-submodule and it is closed under taking Lie brackets.

8. Let ϕ be a diffeomorphism from one smooth manifold M to another smooth manifold N ,
and let VF(P ) denote the vector space of smooth vector fields on a smooth manifold P . Then ϕ

defines a map ϕ∗ from VF(M) to VF(N) as follows:

ϕ∗(X) = T (ϕ) oX oϕ−1

In the lectures it was shown that ϕ∗ defines an isomorphism of Lie algebras. Verify the following
additional properties of this construction:

(a) If ϕ is an identity mapping, then so is ϕ∗.

(b) We have (ϕ∗)
−1

=
(

ϕ−1
)

∗
.

(c) If ψ is a diffeomorphism from N to Q, then we have (ψ oϕ)∗ = ψ∗
oϕ∗.

9. Suppose that X : M → T (M) is a smooth vector field. Explain why T (X) : T (M) →
T (T (M)) is usually not a smooth vector field. It will suffice to consider the case where M is an
open subset U of some R

n. [Hint: Consider the standard diffeomorphisms

T (T (U)) ∼= T (U × R
n) ∼= (U × R

n) × (Rn × R
n) and

T (U × R
n) ∼= T (U) × T (Rn) ∼= U × R

n × R
n × R

n

and explain why the two identifications of T (U × R
n) with U × (Rn)

3
differ by a permutation of

coordinates. Think about what would happen if U were open in R
m where m 6= n.]

10. Suppose that U is open in R
n and f : U → R is smooth. The gradient of f , written as

usual by ∇f , is the vector field x → (x,F(x) ) where F : U → R
n is the smooth function whose

coordinates are the partial derivatives of f with respect to the appropriate variables (just as in
multivariable calculus).

(a) Suppose that 0 is a regular value of f and H ⊂ R
n is the inverse image of {0}. Show that

the ∇f(x) is perpendicular to Tx(H) ⊂ {x} × R
n for all x ∈ H.

(b) In the setting above, suppose that f is never zero and X is a vector field. Prove that X is
perpendicular to ∇f if and only if Xf = 0.

(c) Still in the setting above, suppose that X and Y are vector fields and both are perpendicular
to ∇f . Prove that [X,Y ] is also perpendicular to ∇f .
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