EXERCISES FOR MATHEMATICS 205C SPRING 2016 - Part 4

More additional exercises for Chapter 5

These exercises deal with the material in newnotes05c.pdf.

1. If U is open in \mathbb{R}^{n}, then a riemannian metric on U is given by a map of the form

$$
\gamma: U \times \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}, \quad \gamma(x ; A, B)=\mathbf{T}_{B} G(x) A
$$

where \mathbb{R}^{n} is viewed as the space of $n \times 1$ column vectors and $G(x)$ is a smooth function of x whose image lies in the subspace of $n \times n$ matrices which are symmetric and positive definite. Using the Principal Minors test for positive definite matrices, prove the following: Given G, there is some $\delta>0$ such that if $H(x)$ is a symmetric matrix valued function satisfying $\left|h_{i, j}(x)-g_{i, j}(x)\right|<\delta$ for all x, i and j, then the map θ sending $(x ; A, B)$ to ${ }^{\mathbf{T}} B H(x) A$ also defines a riemannian metric on U.
2. \quad Suppose that $g: T(M) \times{ }_{M} T(M) \rightarrow \mathbb{R}$ is a riemannian metric on M and $\varphi: M \rightarrow N$ is a diffeomorphism.
(a) Explain why the map $T_{2}(\varphi): T(M) \times_{M} T(M) \rightarrow T(N) \times_{N} T(N)$ which sends $(A, B) \in$ $T_{p}(M) \times T_{p}(M)$ to

$$
(T(\varphi) A, T(\varphi) B) \in T_{\varphi(p)}(N) \times T_{\varphi(p)}(N)
$$

(for each $p \in M$) is a diffeomorphism. [Hint: As usual, look locally.]
(b) In the setting above, show that the composite $\varphi_{*}(g)=g{ }^{\circ} T_{2}(\varphi)^{-1}$ defines a riemannian metric on N such that for each $p \in M$ the map sends $T_{p}(M)$ to $T_{\varphi(p)}(N)$ by an isometry of inner product spaces. Furthermore, prove that if g_{1}, g_{2} and $g_{1}+g_{2}$ are riemannian metrics then $\varphi_{*}\left(g_{1}+g_{2}\right)=\varphi_{*}\left(g_{1}\right)+\varphi_{*}\left(g_{2}\right)$, and if $s>0$ is a constant, then $\varphi_{*}\left(s \cdot g_{1}\right)=s \cdot \varphi_{*}\left(g_{1}\right)$.
(c) Prove that if φ is the identity map then so is φ_{*}, and if $\psi: N \rightarrow P$ is also a diffeomorphism then $\left(\psi^{\circ} \varphi\right)_{*}=\psi_{*}{ }^{\circ} \varphi_{*}$. Why do these imply that φ_{*} induces an isomorphism from the space of riemannian metrics on M to the space of riemannian metrics on N ?

