CORRECTIONS TO Introduction to Smooth Manifolds (Second Edition)

BY JOHN M. LEE

DECEMBER 17, 2015

- (6/23/13) Page 23, two lines below the first displayed equation: Change "any subspace $S \subseteq V$ " to "any k-dimensional subspace $S \subseteq V$."
- (2/22/15) Page 29, proof of Theorem 1.46, second paragraph, line 4: Change $\varphi(U \cap V)$ to $\psi(U \cap V)$.
- (10/8/15) Page 30, Problem 1-6: Interpret the formula for F_s to mean $F_s(0) = 0$ when $s \le 1$.
- (5/17/14) **Page 45, second paragraph:** Replace the last sentence of that paragraph with the following: "If *N* has empty boundary, we say that a map $F : A \to N$ is *smooth on A* if it has a smooth extension in a neighborhood of each point: that is, if for every $p \in A$ there exist an open subset $W \subseteq M$ containing *p* and a smooth map $F : W \to N$ whose restriction to $W \cap A$ agrees with *F*. When $\partial N \neq \emptyset$, we say $F : A \to N$ is smooth on *A* if for every $p \in A$ there exist an open subset $W \subseteq M$ containing *p* and a smooth on *A* if for every $p \in A$ there exist an open subset $W \subseteq M$ containing *p* and a smooth on *A* if for every $p \in A$ there exist an open subset $W \subseteq M$ containing *p* and a smooth chart (V, ψ) for *N* whose domain contains F(p), such that $F(W \cap A) \subseteq V$ and $\psi \circ F|_{W \cap A}$ is smooth as a map into \mathbb{R}^n in the sense defined above (i.e., it has a smooth extension in a neighborhood of each point)."
- (7/23/14) Page 45, last displayed equation: The first = sign should be \subseteq .
- (11/17/12) **Page 56, first displayed equation:** Change $d\iota(v)_p$ to $d\iota_p(v)$.
- (1/26/15) Page 68, proof of Proposition 3.21: Insert the following sentence at the beginning of the proof: "Let $n = \dim M$ and $m = \dim N$." Then in the second sentence, change (3.9) to (3.10). Finally, in the displayed equation, change F^n to F^m (twice).
- (11/17/12) Page 70, two lines above Corollary 3.25: Change "Proposition 3.23" to "Proposition 3.24."
 - (3/5/15) Page 76, Problem 3-8: Add the following remark: "(For $p \in \partial M$, we need to allow curves with domain $[0, \varepsilon)$ or $(-\varepsilon, 0]$ and to interpret the derivatives as one-sided derivatives.)"
 - (5/4/13) **Page 96, Problem 4-3:** This problem probably needs a better hint. First, to get a good result, you'll have to add the assumption that ker $dF_p \not\subseteq T_p \partial M$. After choosing smooth coordinates, you can assume $M \subseteq \mathbb{H}^m$ and $N \subseteq \mathbb{R}^n$, and extend F to a smooth function \tilde{F} on an open subset of \mathbb{R}^m . If rank F = r, show that there is a coordinate projection $\pi : \mathbb{R}^n \to \mathbb{R}^r$ such that $\pi \circ \tilde{F}$ is a submersion, and apply the rank theorem to $\pi \circ \tilde{F}$ to find new coordinates in which \tilde{F} has a coordinate representation of the form $\hat{F}(x, y) = (x, R(x, y))$. Then use the rank condition to show that $R|_M$ is independent of y.
 - (9/8/15) **Page 100, proof of Proposition 5.4, next-to-last line:** Change "It a homeomorphism" to "It is a homeomorphism."
- (7/15/15) Page 120, proof of Proposition 5.46: At the beginning of the proof, insert this sentence: "Let $F: D \hookrightarrow M$ denote the inclusion map."
- (4/17/13) Page 132, proof of Lemma 6.13, second paragraph: This argument does not apply when $\partial M \neq \emptyset$, because in that case $M \times M$ is not a smooth manifold with boundary. Instead, we can consider the restrictions of κ to $(M \times \operatorname{Int} M) \setminus \Delta_M$ and to $(M \times \partial M) \setminus \Delta_M$ (both of which are smooth manifolds with boundary), and note that there is a point $[v] \in \mathbb{RP}^{N-1}$ that is not in the image of τ or either of these restrictions of κ . [Thanks to David Iglesias Ponte for suggesting this correction.]
- (7/3/15) Page 134, displayed equations two-thirds of the way down the page: In the definition of E_i , there's an "i-i" that should be "i-1." It should read $E_i = f^{-1}([b_{i-1}, a_{i+1}])$.
- (11/25/12) Page 145, statement of Corollary 6.33: After "immersed submanifold," insert "with dim $S = \dim M$."

- (11/25/12) Page 148, Problem 6-13: Delete part (c). [This statement is simply wrong. It is true with the added hypothesis that F' is an embedding, but then it's essentially just a restatement of part (b).]
- (8/26/14) Page 169, first line: Change \tilde{G} to G.
- (9/17/14) **Page 173, Problem 7-21:** Replace the first sentence by "Prove that the groups in Problem 7-20 are isomorphic to direct products of the indicated groups in cases (a) and (c) if and only if n is odd, and in cases (b) and (d) if and only if n = 1."
- (11/17/12) Page 196, proof of Proposition 8.45, next-to-last line: Should read " $F_* \circ (F^{-1})_* = (F \circ F^{-1})_* = \mathrm{Id}_{\mathrm{Lie}(H)}$ and $(F^{-1})_* \circ F_* = \mathrm{Id}_{\mathrm{Lie}(G)}$."
- (12/2/15) Page 217, Fig. 9.7: Both occurrences of φ should be Φ .
- (12/2/15) Page 219, second displayed equation: Change " $V^j(0, p) = 0$ " to " $\Phi^j(0, p) = 0$."
- (12/2/15) Page 219, two lines below (9.12): Here and in the rest of the paragraph, change p_0 to p_1 (seven times) to avoid confusion with the prior unrelated use of p_0 in this proof.
- (8/19/14) Page 223, proof of Theorem 9.26: There's a gap in this proof, because it is not necessarily the case that M(a) is a regular domain in Int M. To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:

"Theorem 9.25 shows that ∂M has a collar neighborhood C_0 in M, which is the image of a smooth embedding $E_0: [0,1) \times \partial M \to M$ satisfying $E_0(0,x) = x$ for all $x \in \partial M$. Let $f: M \to \mathbb{R}^+$ be a smooth positive exhaustion function. Note that $W = \{(t,x): f(E_0(t,x)) > f(x) - 1\}$ is an open subset of $[0,1) \times \partial M$ containing $\{0\} \times \partial M$. Using a partition of unity as in the proof of Theorem 9.20, we may construct a smooth positive function $\delta: \partial M \to \mathbb{R}$ such that $(t,x) \in W$ whenever $0 \le t < \delta(x)$. Define $E: [0,1) \times \partial M \to M$ by $E(t,x) = E_0(t\delta(x),x)$. Then E is a diffeomorphism onto a collar neighborhood C of ∂M , and by construction f(E(t,x)) > f(x) - 1 for all $(t,x) \in [0,1) \times \partial M$. We will show that for each $a \in (0,1)$, the set $E([0,a] \times \partial M)$ is closed in M. Suppose p is a boundary point of $E([0,a] \times \partial M)$ in M; then there is a sequence $\{(t_i, x_i)\} + 1$ also remains bounded. Since ∂M is closed in M, $f|_{\partial M}$ is also an exhaustion function, and therefore the sequence $\{x_i\}$ lies in some compact subset of ∂M . Passing to a subsequence, we may assume $(t_i, x_i) \to (t_0, x_0)$, and therefore $p = E(t_0, x_0) \in E([0,a] \times \partial M)$."

Then at the end of the first paragraph of the proof, add the following sentences:

"To see that M(a) is a regular domain, note first that it is closed in M because it is the complement of the open set C(a). Let $p \in M(a)$ be arbitrary. If $p \notin E([0, a] \times \partial M)$, then p has a neighborhood in Int M contained in M(a) by the argument above. If $p \in E([0, a] \times \partial M)$, then p = E(a, x) for some $x \in \partial M$, and C is a neighborhood of p in which $M(a) \cap C$ is the diffeomorphic image of $[a, 1) \times \partial M$."

- (1/30/14) Page 223, proof of Theorem 9.26, last line of the first paragraph: Change $0 \le t < a$ to $0 \le s < a$.
- (1/30/14) Page 225, Example 9.31: At the end of the example, insert the sentence "If $n \ge 2$, then $M_1 \# M_2$ is connected."
- (4/23/13) Page 230, second paragraph: "from Case" should be "from Case 1."
- (6/4/14) Page 246, Problem 9-11: Delete the second sentence of the hint. [Because N is inward-pointing along ∂M , no integral curve that starts on ∂M can hit the boundary again, because the vector field would have to be tangent to ∂M or outward-pointing at the first such point.]
- (7/2/14) Page 264, paragraph above the subheading, first sentence: "homomorphism" should be "homomorphisms."
- (6/29/15) Page 278, Example 11.13, third line: Change "every coordinate frame" to "every coordinate coframe."
- (4/17/15) **Page 333, first line:** Change $U \subseteq M$ to $V \subseteq M$.

- (7/1/14) **Page 345, Problem 13-10:** In the last line of the problem statement, change $L_{\overline{g}}(\widetilde{\gamma}) > L_{\overline{g}}(\gamma)$ to $L_{\overline{g}}(\widetilde{\gamma}) \ge L_{\overline{g}}(\gamma)$, and delete the phrase "unless $\widetilde{\gamma}$ is a reparametrization of γ ." [Because the definition of reparametrization that I'm using requires a diffeomorphism of the parameter domain, the original problem statement was not true.]
- (12/18/12) Page 355, proof of Lemma 14.10: At the beginning of the proof, insert "Let (E_1, \ldots, E_n) be the basis for V dual to (ε^i) ."
- (12/18/12) Page 356, Case 4, second line: Should read "brings us back to Case 3."
 - (7/3/15) **Page 368, second paragraph:** At the end of the first sentence of the paragraph, insert "(see pp. 341–343)."
- (9/17/14) Page 371, three lines above (14.31): Change that sentence to "The only terms in this sum that can possibly be nonzero are those for which J has no repeated indices and m is equal to one of the indices in J, say $m = j_p$."
- (4/26/14) Page 402, lines 2-3: There should not be a paragraph break before "and."
- (7/22/15) Page 424, second displayed equation: Change $\iota_S^*\beta(X)$ to $\iota_{\partial M}^*\beta(X)$.
- (2/18/13) Page 426, three lines below the section heading: "cam" should be "can."
- (2/11/15) **Page 430, Proposition 16.38(c):** This statement is wrong. Change it to "If F is smooth, then $F^*\mu$ is a continuous density on M; and if F is a local diffeomorphism, $F^*\mu$ is smooth."
- (2/19/13) Page 444, two lines below equation (17.4): Change $T_{(q,s)}M$ to $T_{(q,s)}(M \times \mathbb{R})$.
- (5/15/15) **Page 450, proof of Theorem 17.21, line 5:** Change $H^1_{dR}(\mathbb{S}^n)$ to $H^1_{dR}(\mathbb{S}^1)$.
- (6/29/14) Pages 455–456, Proof of Theorem 17.32: The proof given in the book is incorrect, because the V_i 's might not be connected, so Theorem 17.30 does not apply to them. Here's a corrected proof.

Lemma. If M is a noncompact connected manifold, there is a countable, locally finite open cover $\{V_j\}_{j=1}^{\infty}$ of M such that each V_i is connected and precompact, and for each j, there exists k > j such that $V_j \cap V_k \neq \emptyset$.

Proof. Let $\{W_j\}_{j=1}^{\infty}$ be a countably infinite, locally finite cover of M by precompact, connected open sets (such a cover exists by Prop. 1.19 and Thm. 1.15). By successively deleting unneeded sets and renumbering, we can ensure that no W_j is contained in the union of the other W_i 's.

Let $Y_1 = \bigcup_{i=2}^{\infty} W_i$. Because M is connected, each component of Y_1 meets W_1 , and by local finiteness of $\{W_j\}$, there are only finitely many such components. Such a component is precompact in M if and only if it is a union of finitely many W_i 's. Let V_1 be the union of W_1 together with all of the precompact components of Y_1 , and let X_1 be the union of all W_i 's not contained in V_1 . Then V_1 is connected and precompact, and X_1 has no precompact components. Proceeding by induction, suppose we have defined connected, precompact open sets V_1, \ldots, V_m whose union contains $W_1 \cup \cdots \cup W_m$, and such that the union X_m of all the W_i 's not contained in some V_j has no precompact component of Y_{m+1} be the union of all W_i 's other than W_{m+1} not contained in some V_j . Any precompact component of Y_{m+1} must meet W_{m+1} , because otherwise, it would be a precompact component of X_m . Let V_{m+1} be the union of W_{m+1} with all of the precompact components of Y_{1,\ldots,V_{m+1} has no precompact components. Then by construction, for each j, the set $X_j = \bigcup_{i>j} V_i$ has no precompact components. Then by construction, for each j, then V_j itself is a precompact component of X_{j-1} , which is a contradiction. Thus for each j, there is some k > j such that $V_j \cap V_k \neq \emptyset$.

Proof of Theorem 17.32. Choose an orientation on M. Let $\{V_j\}_{j=1}^{\infty}$ be an open cover of M satisfying the conclusions of the preceding lemma. For each j, let K(j) denote the least integer k > j such that $V_j \cap V_k \neq \emptyset$, and let θ_j be an *n*-form compactly supported in $V_j \cap V_{K(j)}$ whose integral is 1. Let $\{\psi_j\}_{j=1}^{\infty}$ be a smooth partition of unity subordinate to $\{V_j\}_{j=1}^{\infty}$.

Now suppose ω is any *n*-form on M, and let $\omega_j = \psi_j \omega$ for each j. Let $c_1 = \int_{V_1} \omega_1$, so that $\omega_1 - c_1 \theta_1$ is compactly supported in V_1 and has zero integral. It follows from Theorem 17.30 that there exists $\eta_1 \in \Omega_c^n(V_1)$

such that $d\eta_1 = \omega_1 - c_1 \theta_1$. Suppose by induction that we have found η_1, \ldots, η_m and constants c_1, \ldots, c_m such that for each $j = 1, \ldots, m, \eta_j \in \Omega_c^n(V_j)$ and

$$d\eta_j = \left(\omega_j + \sum_{i:K(i)=j} c_i \theta_i\right) - c_j \theta_j.$$
(*)

Let

$$c_{j+1} = \int_{V_{j+1}} \left(\omega_{j+1} + \sum_{i:K(i)=j+1} c_i \theta_i \right).$$

Then by Theorem 17.30, there exists $\eta_{j+1} \in \Omega_c^n(V_{j+1})$ satisfying the analog of (*) with *j* replaced by j + 1. Set $\eta = \sum_{j=1}^{\infty} \eta_j$, with each η_j extended to be zero on $M \setminus V_j$. By local finiteness, this is a smooth *n*-form on *M*. It satisfies

$$d\eta = d\omega + \sum_{j=1}^{\infty} \left(\sum_{i:K(i)=j} c_i \theta_i \right) - \sum_{j=1}^{\infty} c_j \theta_j.$$

Each term $c_i \theta_i$ appears exactly once in the first sum above, so the two sums cancel each other.

- (1/15/13) Page 491, Example 19.1(c): Delete the word "unit."
- (5/22/15) Page 492, line above Proposition 19.2: Change "lie" to "Lie."
- (12/17/15) Page 492, proof of Proposition 19.2, fourth line: Change "Given $p \in M$ " to "Given $p \in U$."
- (10/9/15) Page 568, Example 22.9(a), first line: The coordinates should be $(x^1, \ldots, x^n, y^1, \ldots, y^n)$. (The last coordinate is y^n , not x^n .)
- (11/28/12) Page 584, Exercise 22.29: Part (b) should read

(b)
$$T = \frac{\partial}{\partial z};$$

- (8/14/14) Page 584, paragraph above Theorem 22.33: Change all occurrences of θ in this paragraph to ψ , to avoid confusion with the use of θ for a contact form elsewhere in this section.
- (11/17/12) Page 587, equation (22.27): Change both occurrences of $\sigma(s)$ to $\sigma(x)$.
- (9/22/15) **Page 608, Proposition A.41(a):** Insert the following phrase at the beginning of this statement: *With the exception of the word "closed" in part (d).*
- (7/22/13) Page 616, Proposition A.77(b), last line: Change $\tilde{f}(0)$ to $\tilde{f}_e(0)$.
- (12/2/15) Page 666, just below the fifth display: After the sentence ending "by our choice of δ and ε ," insert "(If $t < t_0$, interchange t and t_0 in the second line above.)"
- (12/2/15) Page 667, proof of Theorem D.5, second paragraph: In the first sentence of the paragraph, after " $\overline{J}_1 \subseteq J_0$," insert "and $\theta(\overline{J}_1 \times \{x_0\}) \subseteq U_0$." Then in the fourth line of that paragraph, change " $\overline{B}_{2c}(y) \subseteq U$ " to " $\overline{B}_$
- (3/19/14) Page 668, second line: Change W to \overline{W} .
- (3/19/14) Page 668, paragraph below equation (D.10): In the fourth line of the paragraph, change \overline{W} to W, and in the fifth line, change W to \overline{W} .