Corrections to
 Introduction to Smooth Manifolds (Second Edition)

By John M. LEE

DECEMBER 17, 2015
(6/23/13) Page 23, two lines below the first displayed equation: Change "any subspace $S \subseteq V$ " to "any k-dimensional subspace $S \subseteq V$."
(2/22/15) Page 29, proof of Theorem 1.46, second paragraph, line 4: Change $\varphi(U \cap V)$ to $\psi(U \cap V)$.
(10/8/15) Page 30, Problem 1-6: Interpret the formula for F_{s} to mean $F_{s}(0)=0$ when $s \leq 1$.
(5/17/14) Page 45, second paragraph: Replace the last sentence of that paragraph with the following: "If N has empty boundary, we say that a map $F: A \rightarrow N$ is smooth on \boldsymbol{A} if it has a smooth extension in a neighborhood of each point: that is, if for every $p \in A$ there exist an open subset $W \subseteq M$ containing p and a smooth map $F: W \rightarrow N$ whose restriction to $W \cap A$ agrees with F. When $\partial N \neq \varnothing$, we say $F: A \rightarrow N$ is smooth on A if for every $p \in A$ there exist an open subset $W \subseteq M$ containing p and a smooth chart (V, ψ) for N whose domain contains $F(p)$, such that $F(W \cap A) \subseteq V$ and $\left.\psi \circ F\right|_{W \cap A}$ is smooth as a map into \mathbb{R}^{n} in the sense defined above (i.e., it has a smooth extension in a neighborhood of each point)."
(7/23/14) Page 45, last displayed equation: The first $=$ sign should be \subseteq.
(11/17/12) Page 56, first displayed equation: Change $d \iota(v)_{p}$ to $d \iota_{p}(v)$.
(1/26/15) Page 68, proof of Proposition 3.21: Insert the following sentence at the beginning of the proof: "Let $n=\operatorname{dim} M$ and $m=\operatorname{dim} N . "$ Then in the second sentence, change (3.9) to (3.10). Finally, in the displayed equation, change F^{n} to F^{m} (twice).
(11/17/12) Page 70, two lines above Corollary 3.25: Change "Proposition 3.23" to "Proposition 3.24."
(3/5/15) Page 76, Problem 3-8: Add the following remark: "(For $p \in \partial M$, we need to allow curves with domain $[0, \varepsilon$) or $(-\varepsilon, 0]$ and to interpret the derivatives as one-sided derivatives.)"
(5/4/13) Page 96, Problem 4-3: This problem probably needs a better hint. First, to get a good result, you'll have to add the assumption that ker $d F_{p} \nsubseteq T_{p} \partial M$. After choosing smooth coordinates, you can assume $M \subseteq \mathbb{H}^{m}$ and $N \subseteq \mathbb{R}^{n}$, and extend F to a smooth function \widetilde{F} on an open subset of \mathbb{R}^{m}. If rank $F=r$, show that there is a coordinate projection $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ such that $\pi \circ \widetilde{F}$ is a submersion, and apply the rank theorem to $\pi \circ \widetilde{F}$ to find new coordinates in which \widetilde{F} has a coordinate representation of the form $\widehat{F}(x, y)=(x, R(x, y))$. Then use the rank condition to show that $\left.R\right|_{M}$ is independent of y.
(9/8/15) Page 100, proof of Proposition 5.4, next-to-last line: Change "It a homeomorphism" to "It is a homeomorphism."
$(7 / 15 / 15)$ Page 120, proof of Proposition 5.46: At the beginning of the proof, insert this sentence: "Let $F: D \hookrightarrow M$ denote the inclusion map."
(4/17/13) Page 132, proof of Lemma 6.13, second paragraph: This argument does not apply when $\partial M \neq \varnothing$, because in that case $M \times M$ is not a smooth manifold with boundary. Instead, we can consider the restrictions of κ to $(M \times \operatorname{Int} M) \backslash \Delta_{M}$ and to $(M \times \partial M) \backslash \Delta_{M}$ (both of which are smooth manifolds with boundary), and note that there is a point $[v] \in \mathbb{R} \mathbb{P}^{N-1}$ that is not in the image of τ or either of these restrictions of κ. [Thanks to David Iglesias Ponte for suggesting this correction.]
(7/3/15) Page 134, displayed equations two-thirds of the way down the page: In the definition of E_{i}, there's an " $i-i$ " that should be " $i-1$." It should read $E_{i}=f^{-1}\left(\left[b_{i-1}, a_{i+1}\right]\right)$.
(11/25/12) Page 145, statement of Corollary 6.33: After "immersed submanifold," insert "with $\operatorname{dim} S=\operatorname{dim} M$."
(11/25/12) Page 148, Problem 6-13: Delete part (c). [This statement is simply wrong. It is true with the added hypothesis that F^{\prime} is an embedding, but then it's essentially just a restatement of part (b).]
(8/26/14) Page 169, first line: Change \tilde{G} to G.
(9/17/14) Page 173, Problem 7-21: Replace the first sentence by "Prove that the groups in Problem 7-20 are isomorphic to direct products of the indicated groups in cases (a) and (c) if and only if n is odd, and in cases (b) and (d) if and only if $n=1$."
(11/17/12) Page 196, proof of Proposition 8.45, next-to-last line: Should read " $F_{*} \circ\left(F^{-1}\right)_{*}=\left(F \circ F^{-1}\right)_{*}=\operatorname{Id}_{\text {Lie }(H)}$ and $\left(F^{-1}\right)_{*} \circ F_{*}=\operatorname{Id}_{\text {Lie }(G)}$."
(12/2/15) Page 217, Fig. 9.7: Both occurrences of φ should be Φ.
$(12 / 2 / 15)$ Page 219, second displayed equation: Change " $V^{j}(0, p)=0$ " to " $\Phi^{j}(0, p)=0$."
(12/2/15) Page 219, two lines below (9.12): Here and in the rest of the paragraph, change p_{0} to p_{1} (seven times) to avoid confusion with the prior unrelated use of p_{0} in this proof.
(8/19/14) Page 223, proof of Theorem 9.26: There's a gap in this proof, because it is not necessarily the case that $M(a)$ is a regular domain in $\operatorname{Int} M$. To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:
"Theorem 9.25 shows that ∂M has a collar neighborhood C_{0} in M, which is the image of a smooth embedding $E_{0}:[0,1) \times \partial M \rightarrow M$ satisfying $E_{0}(0, x)=x$ for all $x \in \partial M$. Let $f: M \rightarrow \mathbb{R}^{+}$be a smooth positive exhaustion function. Note that $W=\left\{(t, x): f\left(E_{0}(t, x)\right)>f(x)-1\right\}$ is an open subset of $[0,1) \times \partial M$ containing $\{0\} \times \partial M$. Using a partition of unity as in the proof of Theorem 9.20, we may construct a smooth positive function $\delta: \partial M \rightarrow \mathbb{R}$ such that $(t, x) \in W$ whenever $0 \leq t<\delta(x)$. Define $E:[0,1) \times \partial M \rightarrow M$ by $E(t, x)=E_{0}(t \delta(x), x)$. Then E is a diffeomorphism onto a collar neighborhood C of ∂M, and by construction $f(E(t, x))>f(x)-1$ for all $(t, x) \in[0,1) \times \partial M$. We will show that for each $a \in(0,1)$, the set $E([0, a] \times \partial M)$ is closed in M. Suppose p is a boundary point of $E([0, a] \times \partial M)$ in M; then there is a sequence $\left\{\left(t_{i}, x_{i}\right)\right\}$ in $[0, a] \times \partial M$ such that $E\left(t_{i}, x_{i}\right) \rightarrow p \in M$. Then $f\left(E\left(t_{i}, x_{i}\right)\right)$ remains bounded, and thus $f\left(x_{i}\right)<f\left(E\left(t_{i}, x_{i}\right)\right)+1$ also remains bounded. Since ∂M is closed in $M,\left.f\right|_{\partial M}$ is also an exhaustion function, and therefore the sequence $\left\{x_{i}\right\}$ lies in some compact subset of ∂M. Passing to a subsequence, we may assume $\left(t_{i}, x_{i}\right) \rightarrow\left(t_{0}, x_{0}\right)$, and therefore $p=E\left(t_{0}, x_{0}\right) \in E([0, a] \times \partial M)$."

Then at the end of the first paragraph of the proof, add the following sentences:
"To see that $M(a)$ is a regular domain, note first that it is closed in M because it is the complement of the open set $C(a)$. Let $p \in M(a)$ be arbitrary. If $p \notin E([0, a] \times \partial M)$, then p has a neighborhood in Int M contained in $M(a)$ by the argument above. If $p \in E([0, a] \times \partial M)$, then $p=E(a, x)$ for some $x \in \partial M$, and C is a neighborhood of p in which $M(a) \cap C$ is the diffeomorphic image of $[a, 1) \times \partial M$."
$(1 / 30 / 14)$ Page 223, proof of Theorem 9.26, last line of the first paragraph: Change $0 \leq t<a$ to $0 \leq s<a$.
(1/30/14) Page 225, Example 9.31: At the end of the example, insert the sentence "If $n \geq 2$, then $M_{1} \# M_{2}$ is connected."
(4/23/13) Page 230, second paragraph: "from Case" should be "from Case 1."
(6/4/14) Page 246, Problem 9-11: Delete the second sentence of the hint. [Because N is inward-pointing along ∂M, no integral curve that starts on ∂M can hit the boundary again, because the vector field would have to be tangent to ∂M or outward-pointing at the first such point.]
(7/2/14) Page 264, paragraph above the subheading, first sentence: "homomorphism" should be "homomorphisms."
(6/29/15) Page 278, Example 11.13, third line: Change "every coordinate frame" to "every coordinate coframe."
(4/17/15) Page 333, first line: Change $U \subseteq M$ to $V \subseteq M$.
(7/1/14) Page 345, Problem 13-10: In the last line of the problem statement, change $L_{\bar{g}}(\tilde{\gamma})>L_{\bar{g}}(\gamma)$ to $L_{\bar{g}}(\tilde{\gamma}) \geq L_{\bar{g}}(\gamma)$, and delete the phrase "unless $\tilde{\gamma}$ is a reparametrization of γ." [Because the definition of reparametrization that I'm using requires a diffeomorphism of the parameter domain, the original problem statement was not true.]
(12/18/12) Page 355, proof of Lemma 14.10: At the beginning of the proof, insert "Let $\left(E_{1}, \ldots, E_{n}\right)$ be the basis for V dual to $\left(\varepsilon^{i}\right)$."
(12/18/12) Page 356, Case 4, second line: Should read "brings us back to Case 3."
(7/3/15) Page 368, second paragraph: At the end of the first sentence of the paragraph, insert "(see pp. 341-343)."
(9/17/14) Page 371, three lines above (14.31): Change that sentence to "The only terms in this sum that can possibly be nonzero are those for which J has no repeated indices and m is equal to one of the indices in J, say $m=j_{p}$."
(4/26/14) Page 402, lines 2-3: There should not be a paragraph break before "and."
(7/22/15) Page 424, second displayed equation: Change $\iota_{S}^{*} \beta(X)$ to $\iota_{\partial M}^{*} \beta(X)$.
(2/18/13) Page 426, three lines below the section heading: "cam" should be "can."
$(2 / 11 / 15)$ Page 430, Proposition 16.38(c): This statement is wrong. Change it to "If F is smooth, then $F^{*} \mu$ is a continuous density on M; and if F is a local diffeomorphism, $F^{*} \mu$ is smooth."
(2/19/13) Page 444, two lines below equation (17.4): Change $T_{(q, s)} M$ to $T_{(q, s)}(M \times \mathbb{R})$.
(5/15/15) Page 450, proof of Theorem 17.21, line 5: Change $H_{\mathrm{dR}}^{1}\left(\mathbb{S}^{n}\right)$ to $H_{\mathrm{dR}}^{1}\left(\mathbb{S}^{1}\right)$.
(6/29/14) Pages 455-456, Proof of Theorem 17.32: The proof given in the book is incorrect, because the V_{i} 's might not be connected, so Theorem 17.30 does not apply to them. Here's a corrected proof.

Lemma. If M is a noncompact connected manifold, there is a countable, locally finite open cover $\left\{V_{j}\right\}_{j=1}^{\infty}$ of M such that each V_{i} is connected and precompact, and for each j, there exists $k>j$ such that $V_{j} \cap V_{k} \neq \varnothing$.
Proof. Let $\left\{W_{j}\right\}_{j=1}^{\infty}$ be a countably infinite, locally finite cover of M by precompact, connected open sets (such a cover exists by Prop. 1.19 and Thm. 1.15). By successively deleting unneeded sets and renumbering, we can ensure that no W_{j} is contained in the union of the other W_{i} 's.

Let $Y_{1}=\bigcup_{i=2}^{\infty} W_{i}$. Because M is connected, each component of Y_{1} meets W_{1}, and by local finiteness of $\left\{W_{j}\right\}$, there are only finitely many such components. Such a component is precompact in M if and only if it is a union of finitely many W_{i} 's. Let V_{1} be the union of W_{1} together with all of the precompact components of Y_{1}, and let X_{1} be the union of all W_{i} 's not contained in V_{1}. Then V_{1} is connected and precompact, and X_{1} has no precompact components. Proceeding by induction, suppose we have defined connected, precompact open sets V_{1}, \ldots, V_{m} whose union contains $W_{1} \cup \cdots \cup W_{m}$, and such that the union X_{m} of all the W_{i} 's not contained in some V_{j} has no precompact components. Let Y_{m+1} be the union of all W_{i} 's other than W_{m+1} not contained in some V_{j}. Any precompact component of Y_{m+1} must meet W_{m+1}, because otherwise, it would be a precompact component of X_{m}. Let V_{m+1} be the union of W_{m+1} with all of the precompact components of Y_{m+1}. As before, V_{m+1} is precompact and connected, and the union X_{m+1} of the W_{i} 's not contained in any of V_{1}, \ldots, V_{m+1} has no precompact components. Then by construction, for each j, the set $X_{j}=\bigcup_{i>j} V_{i}$ has no precompact components. If some V_{j} does not meet V_{k} for any $k>j$, then V_{j} itself is a precompact component of X_{j-1}, which is a contradiction. Thus for each j, there is some $k>j$ such that $V_{j} \cap V_{k} \neq \varnothing$.
Proof of Theorem 17.32. Choose an orientation on M. Let $\left\{V_{j}\right\}_{j=1}^{\infty}$ be an open cover of M satisfying the conclusions of the preceding lemma. For each j, let $K(j)$ denote the least integer $k>j$ such that $V_{j} \cap V_{k} \neq \varnothing$, and let θ_{j} be an n-form compactly supported in $V_{j} \cap V_{K(j)}$ whose integral is 1 . Let $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ be a smooth partition of unity subordinate to $\left\{V_{j}\right\}_{j=1}^{\infty}$.

Now suppose ω is any n-form on M, and let $\omega_{j}=\psi_{j} \omega$ for each j. Let $c_{1}=\int_{V_{1}} \omega_{1}$, so that $\omega_{1}-c_{1} \theta_{1}$ is compactly supported in V_{1} and has zero integral. It follows from Theorem 17.30 that there exists $\eta_{1} \in \Omega_{c}^{n}\left(V_{1}\right)$
such that $d \eta_{1}=\omega_{1}-c_{1} \theta_{1}$. Suppose by induction that we have found $\eta_{1}, \ldots, \eta_{m}$ and constants c_{1}, \ldots, c_{m} such that for each $j=1, \ldots, m, \eta_{j} \in \Omega_{c}^{n}\left(V_{j}\right)$ and

$$
\begin{equation*}
d \eta_{j}=\left(\omega_{j}+\sum_{i: K(i)=j} c_{i} \theta_{i}\right)-c_{j} \theta_{j} \tag{*}
\end{equation*}
$$

Let

$$
c_{j+1}=\int_{V_{j+1}}\left(\omega_{j+1}+\sum_{i: K(i)=j+1} c_{i} \theta_{i}\right)
$$

Then by Theorem 17.30 , there exists $\eta_{j+1} \in \Omega_{c}^{n}\left(V_{j+1}\right)$ satisfying the analog of $(*)$ with j replaced by $j+1$. Set $\eta=\sum_{j=1}^{\infty} \eta_{j}$, with each η_{j} extended to be zero on $M \backslash V_{j}$. By local finiteness, this is a smooth n-form on M. It satisfies

$$
d \eta=d \omega+\sum_{j=1}^{\infty}\left(\sum_{i: K(i)=j} c_{i} \theta_{i}\right)-\sum_{j=1}^{\infty} c_{j} \theta_{j}
$$

Each term $c_{i} \theta_{i}$ appears exactly once in the first sum above, so the two sums cancel each other.
(1/15/13) Page 491, Example 19.1(c): Delete the word "unit."
(5/22/15) Page 492, line above Proposition 19.2: Change "lie" to "Lie."
(12/17/15) Page 492, proof of Proposition 19.2, fourth line: Change "Given $p \in M$ " to "Given $p \in U$."
(10/9/15) Page 568, Example 22.9(a), first line: The coordinates should be $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$. (The last coordinate is $y^{n}, \operatorname{not} x^{n}$.)
(11/28/12) Page 584, Exercise 22.29: Part (b) should read

$$
\text { (b) } T=\frac{\partial}{\partial z}
$$

(8/14/14) Page 584, paragraph above Theorem 22.33: Change all occurrences of θ in this paragraph to ψ, to avoid confusion with the use of θ for a contact form elsewhere in this section.
(11/17/12) Page 587, equation (22.27): Change both occurrences of $\sigma(s)$ to $\sigma(x)$.
(9/22/15) Page 608, Proposition A.41(a): Insert the following phrase at the beginning of this statement: With the exception of the word "closed" in part (d).
(7/22/13) Page 616, Proposition A.77(b), last line: Change $\tilde{f}(0)$ to $\widetilde{f_{e}}(0)$.
$(12 / 2 / 15)$ Page 666, just below the fifth display: After the sentence ending "by our choice of δ and ε," insert "(If $t<t_{0}$, interchange t and t_{0} in the second line above.)"
(12/2/15) Page 667, proof of Theorem D.5, second paragraph: In the first sentence of the paragraph, after " $\bar{J}_{1} \subseteq J_{0}$," insert "and $\theta\left(\bar{J}_{1} \times\left\{x_{0}\right\}\right) \subseteq U_{0}$." Then in the fourth line of that paragraph, change " $\bar{B}_{2 c}(y) \subseteq U$ " to " $\bar{B}_{2 c}(y) \subseteq$ U_{0}." [This is to ensure that $J_{1} \times W$ will be contained in the domain of θ.]
(3/19/14) Page 668, second line: Change W to \bar{W}.
(3/19/14) Page 668, paragraph below equation (D.10): In the fourth line of the paragraph, change \bar{W} to W, and in the fifth line, change W to \bar{W}.

