EXERCISES FOR MATHEMATICS 205C
SPRING 2005

The references denote sections of the texts for this course and the two preceding courses in the
sequence:

L. Conlon, Differentiable Manifolds (Second Edition), Birkhduser-Boston, Boston MA,
2001, ISBN 0-8176-4134-3.

J. R. Munkres, Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000, ISBN
0-13-181629-2.

I. Topological Background

I.1: Topological manifolds

(Conlon, §§ 1.1-1.2, 1.7, Appendix A)
Additional exercise

1. Let X be a topological space. Prove that X is a topological 0-manifold if and only if X
is discrete.

2. Suppose that X is a topological manifold and U is an open subset of X. Prove that U
is a topological manifold.

3. Let X be a Hausdorff space, and suppose that X has an open covering {U,} such that
each U, is a topological n-manifold for some fixed n. Prove that X is a topological manifold. Give
a counterexample to this statement if the Hausdorff condition is removed.

4. (1) Suppose that X is a topological n-manifold and Y is a topological m-manifold.
Prove that X x Y with the product topology is a topological (m + n)-manifold.

(13) Suppose that E and X are connected Hausdorff spaces and topological n-manifold if and
only if X is.

5. Let X be a Hausdorff space, and suppose that X has an open covering {U,} such that
each U, is a topological n-manifold for some fixed n. Prove that X is a topological manifold. Why
is this false if the Hausdorff condition is removed?

6. A compact Hausdorff space I is a graph if it is a finite union of subspaces E; such that
each Ej; is homeomorphic to the closed unit interval [0,1] and if ¢ # j then E; N E; is an endpoint of
both E; and F; (note that one can characterize the endpoints topologically as the two points whose
complements are connected). The set of endpoints of the subsets Ej, is called the set of vertices of
I" and each E} is called an edge of I'. Prove that if ' is a topological manifold, then every vertex
lies on exactly two edges. [Hint: Look at the proof that the figure 8 curve is not a topological
manifold.]

7. In the notation of the previous exercise, it follows that if one removes a finite set of
points from T, then T is a topological 1-manifold. All letters in the alphabet and all Hindu-Arabic

1



numerals admit decompositions into closed subspaces which make them into graphs. Assuming
that the letters and numerals are given in the sans-serif form

ABCDEFGHIJKLM
NOPQRSTUVWXY/Z
0

123456789

determine the least numbers of points that must be removed in order to obtain a topological
manifold.

I.2: Partitions of unity

(Conlon, §§ 1.4-1-5)
Additional exercises

1. () For each positive integer n let V;, be the open annulus (ring-shaped region) consisting
of all points = such that n —2 < |z| < n+1. Prove that the family of subsets { V,, } is locally finite.

(13) Suppose X is a topological n-manifold and U is an open covering of X. Prove that there
is an open refinement V of U such that every subset of V is homeomorphic to R".

2. Suppose that U is open in R™ and W is an open neighborhood of U x {0} in U x [0,1).
Prove that there is an open subneighborhood Wy C W of U such that U is a deformation retract of
Wy. [Hint: Partitions of unity guarantee the existence of a continuous positive valued function f
on U whose graph is completely contained in W. Consider the open set W, of all points in U x [0, 1)
that lie under the graph of f.]

3. Let M be a second countable topological manifold and let M* denote its one point
compactification. Using the metrization theorems for topological manifolds, prove that M*® is also
second countable and metrizable. [Hint: First prove that A® is second countable because it is
o-compactness. For metrizability, suppose more generally that A is a bounded locally compact
subset of the normed vector space R* and ¢ : A — [0, +00) =2 [0,1) is a proper map. Consider the
function f : A* — R* x [0, 1] defined by

flz,t) = (L—e@)] fz),1-e(z))

for ordinary points z € A and f(0c04) = (0,1). Prove that this map is continuous on all of A; there
are two cases depending upon whether one has an ordinary point or co 4. Also verify that f is 1-1.
Why do these properties suffice to show that f maps A® homeomorphicall onto its image?]

4. [This question requires some background knowledge from measure theory.] Given a
second countable topological manifold X, define the family of Borel sets B in X to be the smallest
family of subsets that contains the open subsets and is closed under the operations of countable
union, countable intersection and complementation (so it follows that B also contains all closed
subsets). We shall say that a nonnegative measure on B is topologically well-behaved if (i) all one
point subsets have measure zero, (i7) all open subsets have positive measure. — For each n > 0,
the standard Lebesgue measure on R™ defines a topologically well-behaved (Borel) measure.
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(7) Show that B consists of countable unions of countable intersections N,, D,, where each D,, is
either open or closed in X. [Hint: Verify that the family of such subsets is closed under countable
unions and intersections as well as complementation.]

(#3) If X is a topological n-manifold for some n > 0, prove that X has a topologically well-
behaved Borel measure. [Hint: If U is an open subset of X and there is a homeomorphism
h :V — U where V is open in R", why does h send the Borel subsets of V' to the Borel subsets
of U and vice versa? Show that one can define a measure my on U by setting my (A4) = |h=1(A)
where | --- | denotes the usual Lebesgue measure on R™. Why is this a topologically well-behaved
measure? Finally, show that if one pieces a suitable collection of such local measures together using
a partition of unity then one obtains a Borel measure with the desired properties.]

REMARK. The so-called Oxtoby-Ulam Theorem gives an interesting characterization of the
standard Lebesgue measure on R™: If A is a Borel measure on R™ such that (i) all one point
subsets have measure zero, (77) all nonempty open subsets have positive measure, then there is a
homeomorphism A from R" to itself such that A\(A) = |h~!(A)|, where | --- | denotes the usual
Lebesgue measure on R™. Here are some references:

[1] J. C. Oxtoby and S. M. Ulam, measure preserving homeomorphisms and metrical transitivity,
Ann. of Math. (2) 42 (1941), 874-920.

[2] C. Goffman, A note on integration, Math. Mag. 44 (1971), 1-4.

[3] C. Goffman, T. Nishiura, and D. Waterman, Homeomorphisms in Analysis, Mathematical
Surveys and Mongraphs No. 54. American Mathematical Society, Providence RI, 1997. ISBN:
0-8218-3214-X. — Also available online from the following site:

http://www.ams.org/online_bks/survb54/

1.3: The Contraction Lemma

(Conlon, Appendix B)
Additional exercises

1. Prove that the equation 2 — z — sinz = 0 has a real root and that it lies in the closed
interval with endpoints 7/6 and 7/2. Show that ¢(z) = 2 — sinz is a contraction operator on
this interval and then find the root, accurate to six decimal places. [In this example it might be
worthwhile to use a scientific calculator to estimate the numerical value.]

2. Let X be a metric space. A map f: X — X is said to be a nonisometric (or proper)
similarity of X if f is onto and there is a positive constant C # 1 such that

d(f(u)af(v)) = C'd(uav)

for all u, v € X (hence f is 1-1 and uniformly continuous, and in fact has a uniformly continuous
inverse that is also a proper similarity). Prove that every nonisometric similarity of a complete
metric space has a unique fixed point. [Hint and comment: Split into two cases depending upon
whether C' < 1 and C' > 1. In the first case the surjectivity condition turns out to be unnecessary.
In the second case, verify that f has an inverse that is uniformly continuous. Why does f(z) = z
hold if and only if f~1(z) = 7 — The most elementary examples of such maps arise when X = R"
and a classical geometric similarity is given by f(z) = cAz + b, where A comes from an orthogonal
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matrix and either 0 < C < 1 or C' > 1; for these examples one can prove the existence of a unique
fixed point using elementary linear algebra.]

I.4: Basic topological constructions revisited

(¢f. [MUNKRES1], §§ 15, 16, 19, 22)
Additional exercises

1. (1) Let X, Y and Z be sets (resp., topological spaces), and let x denote the usual
cartesian product. Prove that
X x (Y x Z)

is a direct product of sets (resp., topological spaces) as defined in the notes.

(74) Let A, B, C and D be sets (resp. topological spaces), and let x denote the usual cartesian
product. Prove that
(Ax B) x (CxD)

is a direct product of sets (resp. topological spaces) as defined in the notes.
[Note: These may all be viewed as special cases of a more general result.]

2. (1) Let X and Y be topological spaces and let 7: X x Y — Y x X be the “twist map”
which sends (z,y) to (y,z) for all z and y. Prove that 7 is a homeomorphism. [Hint: Consider
the analogous map 7/ : Y x X — X x Y]

(13) Let X be a topological space and let T : X x X x X — X x X x X be the map that cyclically
permutes the coordinates: T'(z,y, z) = (z,z,y). Prove that T is a homeomorphism. [Hint: What
is the test for continuity of a map into a product? Can you write down an explicit formula for the
inverse function?]

3. (“A product of products is a product.”) Let {A, | @ € A} be a family of nonempty
sets, and let A = U{Ag | 8 € B} be a partition of A. Construct a bijective map of [[{A4, | « € A}

to the set
[T{IT{4a | e € Ag} } .
B

If each A, is a topological space and we are working with product topologies, prove that this
bijection is a homeomorphism.

4. Let A be some nonempty set, let {X, | « € A} and {Y, | @ € A} be families of
topological spaces, and for each o € A suppose that f, : X, — Y, is a homeomorphism. Prove

that the product map
II 7« : TIX« — 7
(s (s (87

is also a homeomorphism. [Hint: What happens when you take the product of the inverse maps?]

5. (7) Suppose that f : X — Y and g : Y — Z are topological embeddings. Prove that
g°f is also a topological embedding.

(44) Suppose that h : A — X and k : B — Y are topological embeddings. Prove that
hxk:AxB— X xY is also a topological embedding.



II. Local theory of smooth functions

I1.1: Differentiability

(Conlon, §§2,1, 2.3-2.4)
Additional ezxercises
1. Use the derivative approximation to estimate the following:
() [(3.02)% + (1.97)% + (5.98)?]
(i) (e!)Y/10 =exp ((1.1)% — (0.9)?)
2. Let f : R™ — R be differentiable. If f(0) = 0 and f(tx) = tf(z) for all t and z prove
that f(z) = (Vf(0),z) for all z; i.e., f is linear. Consequently, any nonlinear function g satisfying the

conditions ¢g(0) = 0 and g(txz) = tg(z) for all ¢t and z is not differentiable although it has directional
derivatives in all directions at the origin (why?).

3. Define f : R> = R by

zy(z® — y?)
flzy) = T2ty
for (z,y) # (0,0) and f(0,0) = 0.
(i) Show that D1 f(0,y) = —y and Dy f(z,0) = z for all z and y.

(17) Conclude that D;D5f(0,0) and DD, f(0,0) exist but are not equal.

4. Show that each of the following is a solution of the heat equation
@ — k282_u
ot O0x?

(where k is a constant):
(7) exp(—k2a?t) sinax
(1%) exp(—z?/4k%t) /'t

5. (i) If f(z) = g(p) where p = |z| and the number n of variables is at least 3, show that

n—1

Vif = ; g'(p) + 9" (p)

for z # 0.
(b) Using the formula displayed above, prove that if V2f = 0 then

flz) = —2 4

|$|n—2

where z # 0 and a and b are constants.



6. Verify that the functions 7™ cos™ 6 and r"sin™ @ satisfy the 2-dimensional Laplace
equation in polar coordinates. [Exercise 3.9 on the same page gives the formula for the Laplacian
in polar coordinates.

7. If

C

f(z,y,2) = %-g(t— B)

where p = (22 + y? + 22)'/2 and ¢ is a constant, show that f satisfies the 3-dimensional wave
equation

1 0%f
V2 — .
! c? ot?
8. The following shows the hazards of denoting functions by real variables. Let w =
f(z,y,z) and z = g(x,y). Then
ow _ wds wldy wd: _ ow owo
0r  Or O0r Oy odx 0z O0r  0Ox Oz Ox

because the partials of £ and y with respect to  are 1 and 0 respectively. Therefore

ow 0z

0z 0z
But if w =z 4+ y + z and z = z + y then the expression on the left hand side is 1 -1 = 1, so that
0 = 1. Where is the mistake?

9. Let o and 8 be norms on R™ and R" respectively. Prove that vy (z,y) = a(z) + S(y)
and 71 (z,y) = max (a(z), B(y)) define norms on R™*" = R™ x R".

10. Let T: R -+ R™ be a 1 — 1 linear mapping. Prove that there is an € > 0 such that
if §: R™ — R™ is linear and satisfies ||S — T'|| < ¢, then S is also 1 — 1.

11. Let 1 <r < 0.

(2) If U is open in R™, prove that the identity map idy is a C* diffeomorphism.

(i) If U and V are open in R™ and f : U — V is a C"-diffeomorphism, then so is f~1.

(232) U, V and W are open in R", and f: U — V and g : V — W are C" diffeomorphisms,
then so is g° f.

12. (1) Suppose that X and Y are subsets of R™ and R™ respectively and that f : X — Y
and g : Y — RP are maps that satisfy Lipschitz conditions. Prove that the composite g° f also
satisfies a Lipschitz condition.

(74) Suppose that X C R™, and let f, g: X — R™ and h : X — R satisfy Lipschitz conditions.
Prove that f+ g satisfies a Lipschitz condition and if X is compact then h- f also satisfies a Lipschitz
condition. If ~ > 0 and X is compact, does 1/h satisfy a Lipschitz condition? Prove this or give a
counterexample.

(747) Suppose that X C R"™, and let f : X — R™ be given. Prove that f satisfies a Lipschitz
condition if and only if all of its coordinate functions do.

13. In the notation of the preceding exercise, suppose that X = A U B and that f is
continuous and satisfies Lipschitz conditions on A and B as well as on an open neighborhood of
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ANB. Does f satisfy a Lipschitz condition on AU B? Prove this or give a counterexample. What
happens if we assume A and B are compact? Justify your answer.

I1.2: Implicit and Inverse Function Theorems

(Conlon, Appendix B, §§ 2.4-2.5)
Additional exercises

1. Show that

_ z Y
f(ll?y) - ($2+y2’ l‘2+y2>

is locally invertible near every point except the origin. Compute the inverse explicitly.

2. Consider the map : R® — R? defined by f(z,y,2) = (z,93, 2%). Note that f has a
global inverse g despite the fact that Df(0) is not invertible. What does this imply about the
differentiability of g at 07

3. Show that the mapping (u,v,w) : R®> — R3 defined by u = = +e¥, v = y + €* and
w = z + €® is everywhere locally invertible.

4. Let f:R3 — Rf, and g : Rf, — R2 be C! inverse functions. Show that

% _ 1 8(f21f3) J= a(flaf?af:i)

Oy1  J O(z2,13) O(z1,72,73)
and obtain similar formulas for the other derivatives of coordinate functions of g.

5. Prove that F(z,y) = (e + vy, ¢ — y) defines a C* homeomorphism of R? with a C*®
inverse.

6. Prove that F(z,y) = (ze¥ +vy, ze¥ —y) defines a C*° homeomorphism of R? with a C*®
inverse.

7. Prove that

F(z,y,z) = +yez,L—yez,2yeZ+z
2

x
2+ 4?2 24y

defines a C*® homeomorphism of R® with a C*® inverse.

8. Let f(z,y) = (z +y, 22 +v). Check that f meets the conditions to have a local inverse
near f(1,0) = (1,1), and if g is this local inverse find Dg(1,1) without finding a formula for the
inverse function explicitly.

9.  Consider the mapping f : R?> — R? given by f(z,y) = (22 + y?,2zy). Show that
the Jacobian vanishes on the lines y = 2. What is the image of f? [Hint: Try using polar
coordinates.| The Inverse Function Theorem guarantees that f has a local inverse at f(1,0) = (1,0).
Find the inverse explicitly and describe a region on which it is defined.

10. The following example shows why it is necessary to assume the continuity at a point in
the Inverse Function Theorem. Let f(t) = t + 2t*sin (1) for ¢ # 0 and set f(0) = 0. Prove
that f/(0) =1, f’ is bounded on (—1,1), but f is not 1-1 on any neighborhood of 0.
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11. (i) Let W be open in R", and let h: W — R* be continuous. Prove that h is smooth if
and only if there is an open covering V of W such that for each V,, in V the restriction f|V, is smooth.
(73) Let U and V be open in R", let f : U — V be a smooth surjective immersion/submersion,
and suppose that g : V' — R? is a continuous map such that g° f is smooth. Prove that g is also
smooth.

12. A continuous map f: A — X is a retract if there is a continuous map g : X — A such
that gof = ids. Suppose that A and X are open subsets of Euclidean spaces and f and g are
smooth. Prove that f is an immersion.

I1.3: Bump functions

(Conlon, §2.6)
Additional exercises

1. Let f : R = R be a smooth function of class C" where 1 < r < oo, and let K be a
compact subset of R. Then there is a smooth C" function g : R — R such that g|K = f|K and ¢
vanishes off some compact set K’ containing K. [Hint: We can take K = [—a,a] and K’ = [-b,]]
for some a, b such that 0 < a < b.]

2. Suppose that A C R™ and f : A — R is continuous. Suppose further that for each
a € A there is an open neighborhood V, of a such that f|A NV, extends to a smmoth function
on V,. Prove that there is an open set W containing A and a smooth function g : W — R such
that g|A = f. [Hint: Start with a locally refinement & of V = {V, } and a partition of unity
subordinate to U.]

3. The following exercise will be based upon an important result for uniform convergence
of infinite series to a differentiable function that follows from a more general result: Theorem
7.17 on pp.152-153 of BABY RUDIN: Suppose we are given a sequence of uniformly absolutely
convergent smooth C* functions { f, } on an interval U such that >, f} also converges uniformly
and absolutely. Then f is a smooth function and f' =5 f}.

(i) Explain why this result generalizes to smooth C! functions defined on an open set U C RY
for some ¢ > 0 with f] replaced by Vf, (and vector length replacing the absolute value of a real
number).

(i) Let U C RY be open, and let F be a closed subset of U. Prove that there is a smooth C!
function h : U — R such that for all z € U we have h(z) = 0 <= z € F; i.e., in analogy with a
result about continuous functions on metric spaces, every closed subset of U is the zero set for some
smooth C! function on U. [Hints: Take the usual sort of locally finite countable open covering of
U — F by ordinary open disks such that shrunken disks of half the radius still cover U — F', and
let g, be the smooth function defined on the kt* disk using a bump function, where as usual g
extends smoothly to all of U by setting it equal to zero off the disk. Choose positive constants My,
such that |gx| and |Vgi| are both bounded from above by M}, and set

h:Zﬁ.
n

Explain why h is a smooth C! function and the zero set of h is equal to F'.]



I1.4: Vector fields and integral flows
(Conlon, §§2.7-2.8, Appendix C.1-C.3)

Additional exercises

1. Find the flow associated to the vector field on R? given by
9 _p39
Yor Y oy’

2. Find the flow associated to the vector field on R3 given by
0 5 0

ay— —ar— +a"—

ox dy 0z

3. Find the flow associated to the vector field on R? given by

4. Let T: R™ — R"” be a linear transformation that has a basis of eigenvectors { v; } with
associated eigenvalues ;. Given a vector x € R", express x as a linear combination ) j CiXy.
Verify that

1t) = ) ¢ exp(At)v;
J
is a solution to the differential equation y’ = T'(y) with initial condition x(0) = x.

5. Show that the differential equation 3’ = y?/3 with initial condition y(0) = 0 has infinitely
many solutions. [Hint: Consider the functions y such that y(¢) = 0 for ¢t < a and y(t) = ¢3 for
t > a. Some care is needed to compute the derivative of this function at ¢ = a.]

6. Here is a slightly different application of the Contraction Lemma to a boundary value
problem in the theory of differential equations.

(¢) Suppose that F' : [a,b] x R — R is Lipschitz and K is a Lipschitz constant for F. Define
a Green’s function G : [a,b] X [a,b] — R by setting
(t—(z)(b)—s)
Gls,t) = { (—a)b-t
(b—a) =
Note that this function is discontinuous on the diagonal but still integrable. Verify that a continuous
function y on [a,b] satisfies y(t) = f: G(t,s) F(s, y(s)) ds if and only if it satisfies the boundary
value problem y"” + F(t,y) = 0, y(a) = y(b) = 0.
(44) Show that [’ |G(t,s)|ds < (b— a)?/4.
(4i7) Show that if b — a is so small that K (b — a)?/4 < 1, then there is a unique solution to
the boundargy value problem y” + F(t,y) = 0, y(a) = y(b) = 0. [Hint: Define T by T¢(t) =
f: G(t,s) F(t, ©(t)) ds and show that T satisfies the hypothesis of the Contraction Lemma.]



I11. Global theory of smooth manifolds and mappings

IT1.1: Basic definitions and examples

(Conlon, §§3.1-3.2, 3.5)
Additional exercises

1. Let £ be the smooth C* atlas on R whose only chart is the identity, let h : R - R
be the map defined by h(x) = 23, and let &£, be the C® atlas for R whose sole chart is (R, h).
Prove that the map h : (R,€) — (R, &) is a diffeomorphism even though A : (R,€) — (R,E) is
a smooth map whose inverse is not smooth. — Generalize this result to an arbitrary continuous
map (U,&) — (U, &) where h is open in R™ and h is a homeomorphism from U to itself.

2. Let 1 < s <r < o0, and let (M, A) be a smooth C" manifold where A is the maximal
the notes we stated that A is also a C*® atlas but not a maximal C*-atlas. Proof the second part
of this assertion. [Hint: There is a smooth C* diffeomorphism of R™ that is not a smooth C"
diffeomorphism by results in the notes. Why is the analogous statement true if R™ is replaced by
an open disk in R™? Use this to add extra charts to .A such that the larger object is still a smooth
C*® atlas.]

3. This exercise asks for a verification of a statement in the discussion of lens spaces. We
recall the basic setting: Given a finite cyclic group Zj; of order k, and a positive integer n, let
(m1, -+ ,my) be an ordered n-tuple of positive integers less than k such that each m; is prime to

k. Then a topological action of Zy on $2"~1 C C™ = R?" is defined by the formula

Gla o = (@™

Mmn

zZ1, 0" zn)

where g denotes a standard generator of Z; and a = exp(27i/k). Prove that this is a free action
on C" —{0}; i.e., g’z # z if j # 0(k) and z # 0.

4. (The mapping torus construction) Let X be a Hausdorff topological space, let
f : X — X be a homeomorphism, and consider the regular quotient space

Ty =X xR/uy

where ¢ is the equivalence relation (z,s) ~ (y,t) if and only if there is an integer n such that
s=t+mnand y = f*(z). The quotient space is called the mapping torus of f.

(¢) If f is the identity map, prove that X; is homeomorphic to X x S.

(i1) Prove that Ty is Hausdorfl. [Hint: First show that there is a well-defined continuous
map ¢ from T to S* taking the equivalence class of (z,t) to exp(2mit). Suppose u # v in Ty. If
q(u) # q(v) then there are disjoint open neighborhoods U and V of these points in S!, and their
inverse images ¢~1(U) and ¢~1)(V) are disjoint open neighborhoods of u and v. On the other hand,
if g(u) = q(v) = z and W is the open semicircular arc centered at z, then ¢~!(W) is homeomorphic
to (—1,1) x M, which is Hausdorff.]

(ii7) Perhaps the simplest nontrivial example of this is the Klein bottle, for which M = S?!
and f is complex conjugation. Prove that there is a 2-sheeted regular covering map from T2 to the
Klein bottle.

(1v) Prove that the quotient space projection is a regular covering space projection for which
the group of covering transformations is the infinite cyclic group generated by ¢(z,t) = (f(x),t+1).
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(v) If M is a smooth manifold and f is a diffeomorphism, explain why M; has a naturally
associated smooth structure with an infinite cyclic group of covering diffeomorphisms.

(vi) Suppose that X is connected with fundamental group G, and suppose that f is basepoint
preserving. Show that 7% has a fundamental group I' such that G is a normal subgroup, I'/G is
infinite cyclic, and there is a generator  for the quotient group such that ygy~! = f.(g), where f,
is the automorphism of the fundamental group defined by the homeomorphism f.

(vii) Prove that the symmetric group on three letters is a quotient group of the fundamental
group of the Klein bottle. Is the same statement true for the symmetry group of a regular n-gon
in the plane? Prove this or give a counterexample.

5. Let M and N be smooth manifolds, and let h : M — N be a continuous mapping. Prove
that h is smooth if and only if for each open subset V' C N and each smooth function f: V — R
the composite “f°h”: h=}(V) — R is smooth.

6. Let F : R* — R? be the smooth map defined by
F(z,y,5,t) = (2> +y,2° + 4> + > + 12 + 2+ y).

Show that (0,1) is a regular value and that the level set is diffeomorphic to S2.

IT1.2 : Constructions on smooth manifolds

(Conlon, §8§1.7, 3.7)
Additional exercises

1. (1) Let X, Y and Z be smooth manifolds and let x denote the usual cartesian product.
Prove that
X x (Y x Z)

is a direct product of smooth manifolds as defined in the notes.

(74) Let A, B, C and D be smooth manifolds and let x denote the usual cartesian product.
Prove that
(Ax B) x (CxD)

is a direct product of smooth manifolds as defined in the notes.
[Note: These may all be viewed as special cases of a more general result.]

2. Let X and Y be smooth manifolds and let 7 : X x Y — Y x X be the “twist map”
which sends (z,y) to (y,z) for all z and y. Prove that 7 is a diffeomorphism. [Hint: Consider the
analogous map 7/ : Y x X —» X x Y]

(73) Let X be a smooth manifold and let 7 : X x X x X — X x X x X be the map that
cyclically permutes the coordinates: T'(z,y, 2) = (z,z,y). Prove that T is a diffeomorphism. [Hint:
What is the test for smoothness of a map into a product? Can you write down an explicit formula
for the inverse function?]

3. (“A product of products is a product.”) Let {A, | @ € A} be a finite family of
smooth manifolds, and let A = U{Ag | f € B} be a partition of A. Construct a diffeomorphism
from [[{Aq | @ € A} to the set

[I{T{A4a | e € 45} } .
B

11



4. Let A be some nonempty set, let {X, | a € A} and {Y, | @ € A} be finite families of
smooth manifolds, and for each a € A suppose that f, : X, — Y, is a diffeomorphism. Prove that

the product map
II 7« : [IX« —]]%
(s (s 87

is also a diffeomorphism. [Hint: What happens when you take the product of the inverse maps?]

5. Prove that R® — {0} is diffeomorphic to S”~! x R.

I11.3: Smooth approximations

(Conlon, §§3.5, 3.8)
Conlon, pp. 116-117: 3.8.3, 3.8.5, 3.8.6
Additional ezercises
1. Suppose that f : R — R is a diffeomorphism.
(1) Why is the derivative f’ always positive or always negative?

(74) Prove that f is smoothly isotopic to the identity if f’ is always positive and smoothly
isotopic to minus the identity if f’ is always negative. [Hints: It will simplify things to note first
that one can find a diffeomorphism isotopic to f such that f(0) = 0. If f’ > 0, what can one say
about the straight line homotopy from f to the identity?]

(4i7) Prove that every diffeomorphism of S! to itself is smoothly isotopic to either the identity
or complex conjugation.

2. Let M be a smooth manifold. Two diffeomorphisms f and g from M to itself are said to
be smoothly concordant or pseudo-isotopic if there is a homeomorphism H from M x [0, 1] to itself
with the following properties:

(1) The homeomorphism sends M x {0} to itself by f and M x {1} to itself by g.
(2) The homeomorphism is a diffeomorphism on M x (0, 1).

(3) For each x € M there is an open neighborhood U and an ¢ > 0 such that the restrictions
of H to U x [0,¢) and U x (g,1] depend only on the first variable. (If M is compact this
is equivalent to saying that H is given by f on some open set of the form M x [0, ) and
by g on some open set of the form M x (1 — §,1].)

Prove that concordance defines an equivalence relation on diffeomorphisms of M and that
isotopic diffeomorphisms are concordant. [The difference is that a concordance does not send the
level submanifolds M x {t} into themselves. Determining the relation between concordance and
isotopy is a deep and difficult question that was essentially answered in the nineteen seventies by
A. Hatcher and J. Wagoner for manifolds of sufficiently large dimension.]
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II1.4: Amalgamation theorems

(Conlon, §1.3)
Additional ezercises

1.  Let {A, | a € A} be a family of topological spaces, and let X =[], A,. Prove that X
is locally connected if and only if each A, is locally connected.

2. In the preceding exercise, formulate and prove necessary and sufficient conditions on A
and the sets A, for the space X to be compact.

3. Prove that RP? can be constructed by identifying the edge of a Mobius strip with the
edge circle on a closed 2-dimensional disk by filling in the details of the following argument: Let
A C 52 be the set of all points (z,y,z) € S? such that |z| < %, and let B be the set of all points
where |z| > 1. If T(z) = —z, then T(A) = A and T(B) = B so that each of A and B (as well
as their intersection) can be viewed as a union of equivalence classes for the equivalence relation
that produces RP?. By construction B is a disjoint union of two pieces By consisting of all points
where sign(z) = £ 1, and thus it follows that the image of B in the quotient space is homeomorphic
to By = D2. Now consider A. There is a homeomorphism A from S x [—1,1] to A sending (z,v,t)

to (e(t)z, a(t)y, 5t) where
at) =14/1- %

and by construction A(—v) = —h(v). The image of A in the quotient space is thus the quotient of
St x [~1,1] modulo the equivalence relation u ~ v <= u = v. This quotient space is in turn
homeomorphic to the quotient space of the upper semicircular arc Si_ (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (—1,0,¢) equivalent to (1,0, —t),
which yields the M6bius strip. The intersection of this subset in the quotient with the image of B
is just the image of the closed curve on the edge of B,, which also represents the edge curve on
the Mobius strip.

4. Suppose that the topological space X is a union of two closed subspaces A and B, let
C =AnB,let h: C — C be a homeomorphism, and let AUy B be the space formed from ALl B by
identifying x € C C A with h(z) € C C B. Prove that A Up, B is homeomorphic to X if h extends
to a homeomorphism H : A — A, and give an example for which X is not homeomorphic to AU, B.
[Hint: Construct the homeomorphism using H in the first case, and consider also the case where
X = S1u st with Ay == S1 USL; then C = {+1} x {1,2}, and there is a homeomorphism from
h to itself such that A, Uy A_ is connected.]

5. [One-point unions.] One conceptual problem with the disjoint union of topological spaces
is that it is never connected except for the trivial case of one summand. In many geometrical and
topological contexts it is extremely useful to construct a modified version of disjoint unions that is
connected if all the pieces are. Usually some additional structure is needed in order to make such
constructions.

In this exercise we shall describe such a construction for objects known as pointed spaces that
are indispensable for many purposes (e.g., the definition of fundamental groups as in Munkres).
A pointed space is a pair (X, z) consisting of a topological space X and a point z € X; we often
call z the base point, and unless stated otherwise the one point set consisting of the base point is
assumed to be closed. If (Y,y) is another pointed space and f : X — Y is continuous, we shall say
that f is a base point preserving continuous map from (X, z) to (Y,y) if f(z) = y, In this case we
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shall often write f : (X,z) — (Y,y). Identity maps are base point preserving, and composites of
base point preserving maps are also base point preserving.

(¢) Given a finite collection of pointed spaces (X;,z;), define an equivalence relation on [], X;
whose equivalence classes consist of [ [;{z;} and all one point sets y such that y ¢ [[;{z;}. Define
the one point union or wedge

n

V(Xj,75) = (X1,21) V -+ V (Xp, 75)

=1

to be the quotient space of this equivalence relation with the quotient topology. The base point of
this space is taken to be the class of ][ {;}.

(¢) Prove that the wedge is a union of closed subspaces Y; such that each Y; is homeomorphic
to X; and if j # k then Y; N'Y}, is the base point. Explain why Vj (X, zy) is Hausdorff if and
only if each X; is Hausdorff, why Vj (X, zx) is compact if and only if each X is compact, and
why Vi (X, zy) is connected if and only if each X is connected (and the same holds for arcwise
connectedness).

(1) Let @; : (Xj,z;) = Vi (Xg,zx) be the composite of the injection X; — [], X} with
the quotient projection; by construction ¢; is base point preserving. Suppose that (Y,y) is some
arbitrary pointed space and we are given a sequence of base point preserving continuous maps
F;: (X;,z;) — (Y,y). Prove that there is a unique base point preserving continuous mapping

F:vyp (Xk,zi) = (Y,y)

such that Feg; = F; for all j.

(737) In the infinite case one can carry out the set-theoretic construction as above but some care
is needed in defining the topology. Show that if each X is Hausdorff and one takes the so-called
weak topology whose closed subsets are generated by the family of subsets ¢, (F) where F is closed
in X; for some j, then [1] a function h from the wedge into some other space Y is continuous if and
only if each composite h°yp; is continuous, [2] the existence and uniqueness theorem for mappings
from the wedge (in the previous portion of the exercise) generalizes to infinite wedges with the
so-called weak topologies.

(1v) Suppose that we are given an infinite wedge such that each summand is Hausdorff and
contains at least two points. Prove that the wedge with the so-called weak topology is not compact.

Remark.  If each of the summands in (iv) is compact Hausdorff, then there is a natural
candidate for a strong topology on a countably infinite wedge which makes the latter into a compact
Hausdorff space. In some cases this topology can be viewed more geometrically; for example, if
each (X;,z;) is equal to (S*,1) and there are countably infinitely many of them, then the space
one obtains is the Hawaiian earring in R? given by the union of the circles defined by the equations

2
2k 22k °

As usual, drawing a picture may be helpful. The k*® circle has center (1/2%, 0) and passes through
the origin; the y-axis is the tangent line to each circle at the origin.

6. Let {A, | @ € A} be a family of topological spaces, and let X = [, Ay. Formulate
and prove necessary and sufficient conditions on A and the sets A, for the space X to be second
countable, separable or Lindelof.
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IT1.5: Tangent spaces and vector bundles

(Conlon, §8§3.3-3.4)
Additional exercises
1. Prove the following results on tangent bundles.

(1) T(R™) =2 R™ x R™ such that 7 corresponds to projection onto the first factor and the vector
space operations on {pt.} x R™ are given by the standard 1 — 1 correspondence between the latter
and R”.

(#3) If M and N are smooth manifolds, then T (M x N) =2 T(M) x T(N) such that Tarxn
correspond to 7, X Tn.

(#44) If P is a smooth manifold and V is an open subset of P, then T(V) = 73, (V') such that
Ty corresponds to 7a|T(V).

2. Let M be a smooth manifold, let T'(M) be its tangent space, and let z : T(M) — T'(M)
be the map sending each tangent vector to the zero vector at the same point. Prove that z is
smoothly homotopic to the identity.

3. Suppose that f : M — N is a a smooth homeomorphism. Prove that f is a diffeomor-
phism if and only if T'(f) is 1-1 and onto.

II1.6 : Regular mappings and submanifolds

(Conlon, §§1.5, 2.5, 3.7)
Conlon, p. 62: 2.5.15(2)

Additional exercises
A: EXERCISES ON IMMERSIONS AND SUBMERSIONS

1. (i) Let f : M — N be a smooth homoeomorphism of smooth manifolds. Then f is a
diffeomorphism if and only if f is an immersion.

(1) Let f : M — N be a smooth homoeomorphism of smooth manifolds. Then f is a
diffeomorphism if and only if f is a submersion.

(797) Let f: M — N and g : N — P be smooth mappings of smooth manifolds. If f and g are
immersions, then so is their composite g° f.

(tv) Let f: M — N and g : N — P be smooth mappings of smooth manifolds. If f and g are
submersions, then so is their composite g° f.

2. Prove that a smooth map from the 2-sphere to the unit circle cannot be 1-1.
3. Prove that there is no immersion from a compact n-manifold into R”™.
4. Given an immersion from a 1-connected compact smooth manifold onto a smooth

manifold of the same dimension, prove that it is a covering projection. Does the statement remain
true if the manifolds are not necessarily compact? Prove this or give a counterexample.
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5. Let p : E — B be a topological or smooth fiber bundle projection, and assume that p
is onto and B is connected. Prove that the homeomorphism or diffeomorphism type of p~!({z}) is
the same for all = € B. [Hint: If we say x ~ y if and only if the inverse images of these points are
homeomorphic or diffeomoorphic, then ~ is an equivalence relation and it is locally constant.]

6. (7) Suppose that M and N are smooth manifolds. A smooth map f: M — N is said
to be a retract if there is a smooth map g : N — M such that g°f = idy,. Prove that a smooth
retract is a smooth immersion.

(#3) A smooth map of smooth manifolds r : N — M is said to be a smooth retraction if there is
a smooth map 5 : M — N such that r°j = ids. Prove that if r is a retraction, then the restriction
of 7 to some neighborhood of j(M) is a submersion.

(#31) A continuous map of topological spaces is said to be a continuous retract if it satisfies the
condition in (7). Prove that if A and X are Hausdorff then j is a closed mapping. [Hint: To see
that A is closed, show that it is the set of all points such that z = jor(z).]

B: EXERCISES ON SUBMANIFOLDS AND EMBEDDINGS

1. Suppose that U is open in R™ and that f : U - R™ and ¢ : U — R™ are smooth
functions where m < n. Let z € U be a point on the level set L on which g(z) = 0, and suppose
that Dg(z) has rank m (= if we restrict to a suitable open neighborhood V' of z in U, the set
LNV is a smooth submanifold of dimension n — m).

(7) Suppose that f|L has a local maximum at z. Prove that Vf(z) is perpendicular to the
tangent space T, (L). [Hint: What can we say about D[f|L](z) under the given hypothesis?]

(i7) If the coordinates of g are given by g; (where 1 < j < m), explain why the orthogonal
complement of T, (L) is spanned by the vectors Vg;(z).

(731) Using the preceding parts of this exercise, derive the Lagrange Multiplier Rule: One
can find m constants (or Lagrange multipliers) A; such that Vf(z) = =7, Vg;(z) or equivalently
z (and the A;’s) determine a solution to the following system of equations:

Vf—l—Z)\jgj = 0
J

g9(z) =0

Note that this is a system of m +n scalar equations in the n coordinates of  and the m multipliers
Aj.

2. Let f(z,y) = 23 + zy — 2. Show that the level set for the value 1 is a smooth
submanifold but the level set for the value 0 is not. [Hint: In the second case, prove that otherwise

there would be a pair of C* functions z and y satisfying f(z,y) = 0 where z(0) = y(0) = 0 and
(2'(0),4”(0)) # (0,0). Then consider the existence of the limits of z(¢)/y(t) and y(t)/x(t) as t — 0.]

3.  For which real numbers c is the set y2 — z(z — 1)(z — ¢) = 0 a submanifold of R??

4.  Let f(z,y) =y +z* — 2% Find all real numbers c such that the level set f=1({c}) is a
smooth submanifold. Give reasons for your answer.
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5. Let Q@ C R™*! be the unit cube consisting of all (z,---z,) such that max;|z;| = 1.
Prove that @) is homeomorphic to S, that (Q has a smooth atlas for which @ is diffeomorphic to
S™, but @ is not a smooth submanifold of R**+1.

6. Let X be the y-axis in the Cartesian plane, and let Y be the graph of sin% for z > 0.
Prove that X UY is an immersed but not embedded submanifold but that each of X and Y taken
separately is an embedded submanifold.

7. Let A be a real nonsingular symmetric n X n matrix and let ¢ be a nonzero real
number. Show that the quadric hypersurface defined by the equation (Az, z) = c¢ is a smooth
n — 1-dimensional submanifold of R™.

8. Let M be a noncompact smooth manifold. Prove that there is a smooth embedding
f :(—&,00) = M such that the image of [0, 00) is a closed subset.

9. Suppose that M is a noncompact smooth manifold and there is a smooth 1-1 immersion
f: M — RY. Prove that there is a smooth embedding g : M — R™*! such that g(M) is a closed
subset.

10. Let M be a smooth submanifold of NV that is a closed subset of N, and let f and X be
a smooth real valued function and a smooth vector field on M respectively. Prove that f and X
extend to smooth function and vector field (respectively) on N. [Hint: Use submanifold charts.]

11. Let f: S2 — R* be the smooth map sending (z,v, z) to (z% — y2,zy,zz,yz). Show
that f(z,y,z) = f(—=z,—y, —z) for all (z,y,2) and that the associated map g : RP? — R* on the
quotient manifold is a smooth embedding.

12. Show that it is possible to make the subset of the plane defined by the equation
z® —y2 = 0 into a smooth manifold but that the set in question is not a smooth submanifold of
R2. What happens for the set z* — 32 = 0?7

13. Let f: S2 — R* be the smooth map sending (z,v, z) to (z% — y2, 1y, zz,yz). Show
that f(z,y,2) = f(—=, —y,—z) for all (z,y, z) and that the associated map g : RP? — R* on the
quotient manifold is a smooth embedding.

14. Let A C R? be the graph of the function f(t) = |t|. Prove that A is a topologically
locally flat submanifold of R? but not a smooth submanifold. [Hints: Construct a homeomorphism
from R? to itself that sends A to the z-axis. To show A is not a smooth submanifold, derive a
contradiction by finding two candidates for the tangent space at the origin.]

15. Let n1, --- ,nr be positive integers and let N be their sum. Prove that there is a
smooth embedding of []; S into s™*!. [Hint: One always has smooth embeddings of S? x R?

in RP*? and embeddings of $7~! x R in RY. Use these as part of an inductive argument.]

16. Suppose we have smooth maps i : M — N and j : N — L such that j°¢ is a smooth
embedding. Prove that ¢ is a smooth embedding.

17. Show that the set of all orthogonal n x nm matrices is a compact submanifold of the
group GL(n,R) of all invertible matrices. [Hint: Show that the identity matrix I is a regular

17



value of the function TA - A from GL(n,R) to the vector space of all symmetric n x n matrices

viewed as Euclidean space of dimension 3 n(n +1).]

18. Consider the set LF, j of labeled flezible n-gons in R*. These are the figures obtained
by joining n > 2 straight line segments of unit length into a closed curve.

(4) Suppose that n is odd and k = 2. Prove that LF, 5 is a smooth submanifold of R? x T"~!
whose dimension is equal to n.

(73) Prove that the set of all such objects with no self-intersections is a smooth manifold.

19. Let yu denote the standard Lebesgue measure on R™. Recall that a subset A C R™ has
(Lebesgue) measure zero if for every ¢ > 0 there is a countable family of open subsets U; such
that A C U; U; and ), j p(Uj) < €. Also recall that a subset of a set with measure zero also has
measure zero and countable union of sets with measure zero also has measure zero.

(i) Suppose that U and V are open subsets of R™ and ¢ : U — V is a C* diffeomorphism.
Prove that if A C U has measure zero, then ¢(A) also has measure zero. [Hint: If we express
U as an increasing union of the compact subsets K, it suffices to show that each ¢(A N K,,) has
measure zero. Recall that ¢ satisfies Lipschitz conditions on the sets K, .]

(74) Given a smooth manifold M, we shall say that a subset A C M has measure zero if for all
smooth charts (U, h) in a maximal atlas the inverse image h~'(A) has measure zero. — Prove that
A C M has measure zero if and only if there is a countable family of smooth charts (Vj,kg) such
that the images cover A and kﬂ_l(A) has measure zero for all o. [Hint: The (=) implication is
trivial. To prove the reverse implication, let (U, h) be an arbitrary smooth chart, and for each £ let

5= h=*(ANkg(Vz). Why does the hypotheses for the (<) direction imply this set has measure
zero? Finish off by checking that h='(4) = Ug A}.]

(i%3) Given a set of measure zero in a smooth manifold M, show that it must be nowhere dense

in M.

(iv) Let M and N be smooth manifolds such that dim M < dim N, and suppose that f : M —
N is a smooth immersion. Prove that the image of f has measure zero (= is nowhere dense in

REMARK. It is well known the conclusion in (i) does not extend to homeomorphisms; it is
possible (and in fact not very difficult) to construct a homeomorphism that takes a compact set of
measure zero to a set of positive measure. Here is an online reference:

http://www.cut-the-knot.org/do_you_know/Cantor2.shtml

20. (i) Suppose that U is open in R? and o : U — R? is a smooth map such that the cross
products of the partial derivatives satisfies

ol ol

_ X _

Ju ov
on U. Explain why o is a smooth immersion.

(74) Explain why the cross product vector is always perpendicular to the image of Do.

(731) In the setting above let N denote the cross product of the partial derivative vectors and
define a function of three variables by

—

O(u,v,w) = o(u,v) + w-N(u,v) .
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For each z = (ug,vo) € U explain why one can find an open subneighborhood Uy C U containin z
and an £ > 0 such that © maps Uy x (—¢, ¢) diffeomorphically onto an open neighborhood of o(z)
in R3.

Still further exercises for Section II1.4

We continue the previous numbering.

7. Prove that the disjoint union (or sum) topology on [], X, has the following basic
properties:

(i) The family of subsets > T, defines a topology for [ X, such that the injection maps
1o are homeomorphisms onto their respective images. the latter are open and closed subspaces of
[, Xa, and each injection is continuous, open and closed.

(%) The closed subsets of [ [ X, with the disjoint union topology are the sets of the form [ [ F,
where F,, is closed in X, for each .

(i17) If each X, is discrete then so is [, Xa.

(iv) If each X, is Hausdorff then so is [], X,.

(v) If each X, is homeomorphic to a metric space, then so is [ [, Xa.
(

vg) If for each « we are given a continuous function f : X, — W into some fixed space W,
then there is a unique continuous map h : [{ Xo — W such that hei, = f, for all .
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IV. Vector fields

IV.1: Global vector fields

(Conlon, §§2.2, 3.3)
Additional exercises

1. Let X be the vector field on R? such that X (p) = (p: (1,1,1)), and let
11 s
S : (0,00) x (0,2m) x (—Ew, §7r) - R —{(z,y,2) |z < 0 or z = y= 0}
be the spherical coordinate diffeomorphism

(z,y,2) = (pcos@cos ¢, psinbcos ¢, psin ).

What are the formulas for the coordinates of the vector field S;1(X)?

2. Construct a smooth vector field on S? that is zero at exactly one point. [Hint:

stereographic projection. ]

IV.2: Global flows and completeness

(Conlon, §§2.7-2.8, 4.1)

Conlon, pp. 133-134: 4.1.9, 4.1.13
Additional exercises
1. Consider the nonautonomous differential equation
dx
= - 2t
dt

on the real line.

(7) Find the unique solution curve to this equation with initial condition a € R.

Use

(74) Let ® be the flow map giving the solution curves to this equation. Show by example that

®(s, ®(t,a)) # P(s+t,a)

for suitably chosen s,t,a.

2. Consider the vector field Y on the plane defined by the vector-valued function (y,y?).
Find the integral curve ¢, of Y such that ¢(0) = p, and specify the maximal interval for which

this curve is defined. For which points in the plane does ¢, (1) exist?

3. Let X be a smooth vector field on a manifold M, and let f : M — (0,00) be smooth.
Show that the maximal integral curves ¢, (t) for X and ,(¢) for f - X with initial point p are
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reparametrizations of each other. If (—a~,a™) and (—b~,b") are the maximal intervals on which
¢p and 1, are defined, show that

at (P) dt
+ _
b@‘A CR0)

and
PN dt
b@‘[f@ﬂ%mr

4. Given a smooth vector field on a noncompact connected (second countable) manifold M,
show that there is a smooth function f : M — (0,00) such that f- X is complete. [Hint: Take an
increasing family of compact subspaces K; such that K; C Int(K; ;) and M = U;K;. Note that

K,— K, 1 C Int(Ki_,_l — Ki—l)

and therefore there exists a nonnegative smooth function p; on M that is 1 on K; — K;_; and whose
support (= closure of the set where the function is nonzero) is contained in Int(K;41 — K;—1). By
convention Ky and K_; are empty. For each i show that there is an ; > 0 such that |t| < &; =
®,(K;) C K;+1, where ® denotes the flow of X. If

f=Y cipi

i>1

verify that f is a smooth positive function on M and use the preceding exercise to show that

e g = dt
+ J— - R —
b@‘A mmmZA !

B B 0 dt 0 @_
b‘”‘[f@f@ﬁ»zlaq‘l

where a and bT are defined as in the preceding exercise. This means that the domain of the flow
for f- X contains (—1,1) x M.]

™

5. Suppose that X and Y are smooth vector fields on an open set in some Euclidean space,
and let Dx and Dy be the corresponding derivations on the ring of smooth functions C*°(M).
Give an example to show that Dx Dy is not necessarily a derivation.

IV.3: Lie brackets

(Conlon, §§2.2, 2.8, 4.3)
Conlon, p. 90: 2.7.19
Additional exercises
1. Let X and Y be the vector fields in the plane defined by the vector-valued smooth functions
(z,zy) and (y?, Ty) respectively. Compute the Lie bracket [X,Y].
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2. Let ® and ¥ be the 1-parameter groups of diffeomorphisms of R? defined by clockwise
rotation about the z and y axes respectively, and let A and B be the associated vector fields.
Compute the Lie bracket [4, B].

3. Find the Lie brackets of the following pairs of vector fields on R?® (we write 8, for % to
save space):

(i) y 0, — 2zy? 8, and 9.
(i1) —y Oy + z 0y and y O, + x 0y,.

4. Suppose that a smooth function satisfies [fX,Y] = f[X,Y] for all vector fields X and Y.
What can one say about f7?
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