Selected answers for

Mathematics 205C, Spring 2003, Examination 1

Each problem is worth 25 points.

- 1. (i) If M is a topological n-manifold and $x \in M$, then for each open neighborhood U of x there is an open subneighborhood $V \subset U$ such that V is connected and $V \{x\}$ has C_n connected components, where C_n is a positive integer that depends only on n. Give the exact values for the constants C_n .
- (ii) State the definitions of a smooth atlas for a topological manifold M and of a smooth manifold.

SOLUTION TO PART (i):

We have $C_1 = 2$ and $C_n = 1$ for $n \ge 2$. The correct value for C_0 is 0 because a 0-manifold is a discrete set (and therefore we can take $V = \{x\}$).

SOLUTION TO PART (ii):

A smooth atlas for a topological n-manifold is a collection \mathcal{A} of objects (U_{α}, h_{α}) such that each U_{α} is open in \mathbf{R}^{n} , each h_{α} is a map from the corresponding U_{α} to \mathbf{R}^{n} that is a homeomorphism onto an open subset, the image sets $h_{\alpha}(U_{\alpha})$ form an open covering of M, and the transition maps " $h_{\beta}^{-1} \circ h_{\alpha}$ " from $h_{\alpha}^{-1} (h_{\beta}(U_{\beta}))$ to $h_{\beta}^{-1} (h_{\alpha}(U_{\alpha}))$ are smooth (C^{∞}) diffeomorphisms.

A smooth manifold is a pair (M, A) consisting of a topological *n*-manifold M and a maximal smooth atlas A for M.

2. Let U and V be open subsets of Euclidean spaces and let $q:U\to V$ be a smooth map. A smooth map $s:V\to U$ is said to be a *smooth cross section* of q if the composite $q\circ s$ is the identity. Prove that a smooth cross section is always a 1–1 immersion.

SOLUTION:

First of all, s is 1-1 because s(y)=s(z) implies q(s(y))=q(s(z)) and since $q \circ s$ is the identity the second equation reduces to y=z.

To see that s is an immersion, note that $qs = 1_V$ implies that

$$I = D(1_V) = D(q \circ s)$$

where D denotes the derivative, so that the Chain Rule implies

$$I = Dq(s(y)) \circ Ds(y)$$

for all $y \in V$. By elementary linear algebra, this implies that the kernel Ds(y) is always the zero subspace and that Ds(y) is 1-1.

Note. The map q is a submersion on a neighborhood of s(V) because q has maximum rank on the latter the set of all points $u \in U$ for which Dq(u) has maximum rank is always open. However, it need not be a submersion everywhere. Take $U = \mathbf{R}^2$, $V = \mathbf{R}$, s(v) = (v, 0). Let h be a smooth real valued funtion on the real line so that h(t) = 1 for $|t| \leq 1$ and h(t) = 0 for $|t| \geq 2$. Then the map q(x, y) = (xh(y), yh(y)) is not a submersion (it is zero for $|y| \geq 2$) but qs is the identity.

3. Outline the construction of a smooth function $\varphi : \mathbf{R} \to \mathbf{R}$ such that $\varphi(x) = 0$ for $x \leq 0$, φ is increasing for $x \in [0, 1]$, and $\varphi(x) = 1$ for $x \geq 1$.

SOLUTION:

The function $f(x) = \exp(-\frac{1}{x^2})$, which is defined for all real $x \neq 0$, has the property that

$$\lim_{x \to 0} f^{(n)}(x) = 0$$

for all nonnegative integers n, where as usual $f^{(n)}$ denotes the n-th derivative of f.

If we define g by g(x)=f(x) if x>0 and g(x)=0 if $x\leq 0$ then g will be a C^{∞} function.

Define $h(x) = g(x) \cdot g(1-x)$ to obtain a C^{∞} function that is positive if $x \in (0,1)$ and zero otherwise.

Take k(x) to be the (unique) antiderivative of h such that k(0) = 0. Then k'(x) = h(x) = 0 for $x \le 0$ implies that k(x) = 0 for $x \ge 0$, and k'(x) = h(x) = 0 for $x \le 1$ implies that

$$k(x) = k(1) = \int_0^1 h(t) dt$$

for $x \ge 1$. Since h is positive on (0,1), the antiderivative k must be strictly increasing on that interval, and the integral of h over the unit interval must be positive. Finally, take $\varphi(x) = k(x)/k(1)$.

4. Let M and N be smooth manifolds, suppose that f and g are diffeomorphisms from M to N, and let $f \times g : M \times M \to N \times N$ be the product map. Given a smooth manifold Y, let T_Y be the twist map on $Y \times Y$ defined by $T_Y(u,v) = (v,u)$. Prove that the composite $T_N \circ (f \times g) : M \times M \to N \times N$ is also a diffeomorphism. [Hints: Is T_N a diffeomorphism? If so, what is its inverse? Consider $f^{-1} \times g^{-1}$ and the inverse function identity $(h \circ k)^{-1} = k^{-1} \circ h^{-1}$.]

SOLUTION:

The map T_N is a diffeomorphism because it is its own inverse (*Proof*: $T_n(T_N(x,y)) = T_N(y,x) = (x,y)$). The map $f^{-1} \times g^{-1}$ is seen to be an inverse to $f \times g$ by direct calculation. In particular,

$$f^{-1} \times g^{-1} \left(f \times g(x,y) \right) = f^{-1} \times g^{-1} \left(f(x), g(y) \right) = \times g^{-1} \left(f^{-1} \left(f(x) \right), g^{-1} \left(g(y) \right) \right) = (x,y)$$

for all x and y, and similarly if we interchange f and g with f^{-1} and g^{-1} respectively.

Finally, the inverse formula shows that the composite of two diffeomorphisms is a diffeomorphism, and since $T_N \circ (f \times g)$ has been shown to be a composite of two diffeomorphisms, it must also be a diffeomorphism.