SOLUTIONS TO EXERCISES FOR
MATHEMATICS 205A — Part 3

Fall 2003
II. Local theory of smooth functions

I1.1: Differentiability

1. Use the derivative approximation to estimate the following:
() [(3-02)% + (1.97)2 + (5.98)?]
(i1)  (e*)V/'0 =exp ((1.1)%2 - (0.9)?)
SOLUTION.
Take f(z,y,z) = z? +y? + 22, so that Vf(v) = 2v. The general approximation rule is

h(v + Av) = h(v) + (Vh(v), Av)

and in this special case h = f, v = (3,2,6) and Av = (0,02,—-0.03, —0.02). Thus the formula
specializes to

[(3.02)% + (1.97) + (5.98)%] = [3% + 2% + 62] + ((6,4, 12), (0,02, —0.03, —0.02))

which simplifies to 48.76; for the sake of comparison, we note that the actual value is 48.7617 .=
() (410 = exp ((L1)® - (0.9)%)
SOLUTION.

Take f(z,y) = 22 — y2, so that Vf(z,y) = (2ze® ~¥", —2ye® ~¥"). This provides some of the
substitutions needed in the general approximation rule described above. The remaining pieces are
v=(1,1), f1,1) =1 and Av = (0.1,—0.1). Thus the formula specializes to

(e = exp ((1.1)%2 - (0.9)%) ~ Y 44 (01) - =14

For the sake of comparison, we note that the actual value is 1.4918247 to seven decimal places.n

2. Let f : R® — R be differentiable. If f(0) = 0 and f(tz) = tf(z) for all ¢t and z prove
that f(z) = (Vf(0),z) for all z; i.e., f is linear. Consequently, any nonlinear function g satisfying the
conditions ¢g(0) = 0 and g(tz) = t g(x) for all ¢t and z is not differentiable although it has directional
derivatives in all directions at the origin (why?).

SOLUTION.

Let z € R™ be an arbitrary vector; then

DFO)() = lim~ - (f(tr)— £(0) = lim f(2)

t—0 t t—0



and the latter is just f(z). Since the left hand side is a linear function of u the same is true of the
right hand side. But this means that f(z) = (Vf(0),z) for all z.

If g is a nonlinear function satisfying the conditions g(0) = 0 and g(tz) = tg(x) for all ¢ and =,
the right hand side of the displayed formula shows that g has directional derivatives in all directions
through the origin, but if it were differentiable it would have to be linear. Therefore g cannot be
linear.m

3. Define f : R2 — R by
_ zy(e®—y?)
for (z,y) # (0,0) and f(0,0) = 0.
(¢) Show that D; f(0,y) = —y and Dy f(z,0) = x for all z and y.
(#3) Conclude that D1D5f(0,0) and DyD; f(0,0) exist but are not equal.
SOLUTION.

We have

o lw® -yt P — P
DUy = 85 Tere T Barye

for all y. If y # 0 then this limit can easily be evaluated as —y. On the other hand if y = 0 then
we have f(z,0) = 0 so that the first partial is 0 = —y.m

(i2) Conclude that Dy D5 f(0,0) and DD f(0,0) exist but are not equal.
SOLUTION.

Since Dy f(x,0) = z it follows that D1 D5 f(0,0) = 1, and since D7 f(0,y) = —y it follows that
D>D;1£(0,0) = —1.a

FOOTNOTE.

One easy way to see the continuity of f at the origin is to write it in terms of polar coordinate;
in these terms the value of the function is

r2sin 46
4

(verify this), and continuity at the origin is clear from this reformulation.m

4. Show that each of the following is a solution of the heat equation
@ = k282_u
ot 0xz?
(where k is a constant):
(7) exp(—k?a’t) sinax
SOLUTION.

Direct computations show that both sides of the partial differential equation are equal to
—k%a? exp(—k?a’t) sinaz.m



(1%) exp(—xz?/4k%t) [/t
SOLUTION.

Direct but significantly more tedious computations show that both sides of the partial differ-

ential equation are equal to
z? — 2k? 91419
5. (i) If f(z) = g(p) where p = |z| and the number n of variables is at least 3, show that

Vif = nglg’(pHg”(p)

for z # 0.
SOLUTION.

We need to compute the second partials with respect to each variable z; and add them up. By
the Chain Rule

of _ , | 0Op
or, ~ 9 (p) oz,
and the second factor of the right hand side is equal to
Z;
T

1/2
because p = (E j :1:]2) . We must next differentiate this function

T; QI(P)
p

once again with respect to z; and see what happens.

*f 9 (wig’(p)> _ o0 (g’(p)) L g _

oz2 0Oz P or; \ p

2

d (g’(p)> z , 90 (g”(p) _ g’(ﬂ)) z , 90
2
do\ p ) p p p p p p
If we add these expressions over all 7 such that 1 < i < n, we obtain the Laplacian of f. Since
>

i—1 p

2
z:p

(recall that ), z2 = p?) the sum of all the second partial derivatives that gives the Laplacian is

equal to
Y (M_M>ﬁ AT
—\ » > ) p P

7

which simplifies to




and the latter simplifies further to the expression at the end of the exercise.n

(41) Using the formula displayed above, prove that if V2f = 0 then

a

fle) = ——+0b

‘x|n—2

where £ # 0 and a and b are constants.
SOLUTION.

By the formula from the preceding exercise we have

n—1

P g +4'(p) = 0

which reduces to a separable first order differential equation in g’ whose associated general solution
for g(p) = f(x) has the indicated form.m

6. Verify that the functions 7™ cos™ 6 and r"sin” 0 satisfy the 2-dimensional Laplace
equation in polar coordinates. [Exercise 3.9 on the same page gives the formula for the Laplacian
in polar coordinates.

SOLUTION.

The polar form of the Laplacian is

0%¢ 1 0% 10g

+ .
or?  r2 002 r or
If we substitute g(r, ) = r™ cos™ 0 into this expression we obtain

2 2 2

n(n—1)r""2cosnf — n’*""2cosnd + nr"2cosnd

which is equal to O.m

7. If )
p
f(mayaz) = _'g(t__)
p c
where p = (22 4+ 9% 4+ 22)'/2 and c is a constant, show that f satisfies the 3-dimensional wave
equation
1 0%f
e ot?

Vif

SOLUTION.

The idea again is to compute both sides explicitly and note that they are equal. For this
purpose it will be helpful to use the formula for the Laplacian in spherical coordinates that is given
in Exercise 3.10(b) on the same page as the problem we are working. If we write f(x,y,z) as
F(p,0,¢) and F does not depend upon 6 or ¢ (as in our case), the Laplacian formula in spherical
coordinates reduces to )

V2 f = B_F gB_F .
op®>  p Op
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Computing the right hand side of the wave equation for our choice of f is trivial:

19 1 g"(t=p/o

2 o c? P

What about the left hand side? Of course the first step is to compute the partial derivative with

respect to p:
OF 1 (=1)
op  p c

If we take partial derivatives with respect to p again we obtain the following:

yu—m@—-;gu—ma

’F 11 11 1 (—1)

- " (t— — —d(t— -
92 pgg( Nd+ﬁcg( p/c) P

yu—w@+§ga—Md

If we substitute these into the expression for the Laplacian in spherical coordinates we obtain the
same function that we obtained for the right hand side of the wave equation.s

8. The following shows the hazards of denoting functions by real variables. Let w =
f(z,y,2) and z = g(z,y). Then

ow 8w8_:c ﬁw@ 8w% ow Bw%

9z 0505 Oyor  0z05 _ oz 0z oz

because the partials of £ and y with respect to = are 1 and 0 respectively. Therefore

o 0z _
0z Ox

But if w =z 4+ y + z and z = z + y then the expression on the left hand side is 1 -1 = 1, so that
0 = 1. Where is the mistake?

SOLUTION.

Since the point of this fallacy is to show the need to write things down less casually, we should
begin by doing so. The symbol w is actually being used for two separate functions; namely, f(z,y, z)
and B(z,y) = f(z,y, g(z,y))- The application of the Chain Rule in the first line then becomes

0B _ of 050
or Oz 0z Ox
which is consistent with the previous displayed line. The mistake leading to the fallacy is that one

cannot assume that the partial derivatives of B and f with respect to x are equal; these are two
separate functions, and in fact the given example illustrates this fact very clearly.s

9. Let o and 8 be norms on R™ and R" respectively. Prove that vy (z,y) = a(z) + S(y)
and 71 (z,y) = max (a(z), B(y)) define norms on R™*" = R™ x R".

SOLUTION.

In the section on Cartesian products in the course notes we showed that functions of this sort
defined metrics on a product. The proof that the functions described here are norms is similar.s

10. Let T : R™ — R™ be a 1 — 1 linear mapping. Prove that there is an € > 0 such that
if S: R™ — R™ is linear and satisfies ||S — T'|| < €, then S is also 1 — 1.
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SOLUTION.

By the results on equivalences of norms, it suffices to prove the result for any norm on the space
of m x n matrices. For the sake of definiteness we shall use the norm associated to the standard
inner product on the space of all m x n matrices viewed as R™". Denote this norm by |...|2.

Suppose that A is an m X n matrix representing 7'; it is enough to show that all matrices
sufficiently close to A have rank n if (as is the case here) A has rank n. Since the rank of A is n,
one can choose n rows from A to obtain an n x n matrix ¢(A) that is invertible. We know that
the set of invertible square matrices is open, so there is a § > 0 such that |C' — ¢(A4)|2 < ¢ implies
that C is invertible. Since |p(B) — ¢(A)|2 < |B — A|s this implies that the rank of B is at least n
if |B — Al2 < 4. Since the rank of B is at most n, it follows that the rank is exactly n under the
given condition and hence that the linear transformation associated to B is 1-1.m

11. Let 1 <r < oo.
(2) If U is open in R™, prove that the identity map idy is a C* diffeomorphism.
SOLUTION.

The identity on U is a smooth map and equal to its own inverse. Therefore by the definitions
it is a diffeomorphism.=

(i) If U and V are open in R™ and f : U — V is a C"-diffeomorphism, then so is f~1.
SOLUTION.

By hypothesis f~! is a smooth map, and an inverse is just the original map f, which by
hypothesis we also know is smooth.m

(232) U, V and W are open in R", and f: U — V and g : V — W are C" diffeomorphisms,
then so is g° f.

SOLUTION.

The composite of smooth maps is smooth, so this implies g° f is smooth. Also, an inverse to
this map is given by f~1°g~1, which by hypothesis is also smooth. Therefore (g°f)~! is smooth,
and by definition this means g° f is a diffeomorphism.n

12. (1) Suppose that X and Y are subsets of R™ and R™ respectively and that f : X — Y
and g : Y — RP are maps that satisfy Lipschitz conditions. Prove that the composite g° f also
satisfies a Lipschitz condition. Prove this or give a counterexample.

SOLUTION.

By our assumptions there are positive constants A and B such that |f(z) — f(z')] < A-|z — 2|
and |g(y) — g(v')| < B |y — 9| If we set y = f(z) and 3y’ = f(z’) in these formulas we obtain

lgef(z) —g°f(")] < B-|f(z) - f(')] < AB:|z -2

which shows that g f satisfies a Lipschitz condition.m

(73) Suppose that X C R™, and let f, g : X — R™ and h : X — R satisfy Lipschitz conditions.
Prove that f + g satisfies a Lipschitz condition and if X is compact then h - f also satisfies a Lipschitz
condition. If h > 0 and X is compact, does 1/h satisfy a Lipschitz condition? Prove this or give a
counterexample.



SOLUTION.

Let A and B be Lipschitz constants for f and g respectively. Furthermore, let C be a Lipschitz
constant for h.

We verify first that f + g satisfies a Lipschitz condition:

[f +gl(z) = [f + (@) = |f(z) + g(z) - f(2') = g(z")| < [f(z) - fz')] +Ig(z) —g(z)] <
A-lz—2'|+B-|lz—2'| = (A+B)|z—4|

In order to prove that h - f satisfies a Lipschitz condition we need to use the upper bounds
for | f| and |h| which are guaranteed by compactness. Call these bounds P and @ respectively. We
then have that

[h(z)f(z) = h(z")f ()] = |h(x)f(z) = h(z)f (') + h(z)f (") — h(z") ()] <
(@) f () = (@) f ()] + [P(2) f(z') = h(a") f ()] < Q- |f(z) — f(a)] + P+ |h(z) — h(a)] <
QAlz — 3’|+ PClz—4'| = (QA+ PC)|z— 2|

and hence the product satisfies a Lipschitz condition.

Finally, 1/h does satisfy a Lipschitz condition, and here is the proof: In addition to the
preceding let m be the minimum value of |h| on X. Then we have

‘L I

h(z) h(z')|
|h(z") — h(z)]
|h(x) - h(z")|

The denominator is at least m?, and the numerator is at most C - |z — z'|, and therefore Cm™=2 is
a Lipschitz constant for 1/h.m

(131) Suppose that X C R", and let f : X — R™ be given. Prove that f satisfies a Lipschitz
condition if and only if all of its coordinate functions do.

SOLUTION.

( == ) If f satisfies a Lipschitz condition with Lipschitz constant A and f; is the i*® coordinate
function, then

[fi(z) = fi(y)] < [f(2) = fly)] < A-|z—y
for all z and y.m

( <) If each coordinate function f; satisfies a Lipschitz condition, then one can write f =
Zi fi e; where e; is the standard i*" unit vector; therefore the conclusion follows from the first part
of the exercise and finite induction.=

13. In the notation of the preceding exercise, suppose that X = AU B and that f is
continuous and satisfies Lipschitz conditions on A and B as well as on an open neighborhood of
ANB. Does f satisfy a Lipschitz condition on AU B? Prove this or give a counterexample. What
happens if we assume A and B are compact? Justify your answer.
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SOLUTION.

The answer to the first question is no. Consider the function on R — {0} that is 1 for positive
numbers and —1 for negative numbers. This satisfies a Lipschitz condition on A and B as well as an
open neighborhood of AN B = (). However, if we take z and z’ to be £1/n then |f(z) — f(z')| = 2
while |z — 2’| = 2/n, and hence any Lipschitz constant for f on AU B would have to be at least n
for every positive integer n. Therefore f does not satisfy a Lipschitz condition on A U B.

The answer to the second question is yes. Let U be an open neighborhood of AN B on which
f satisfies a Lipschitz condition, and let Ky be the associated Lipschitz constant. Similarly, let K4
and K> be Lipschitz constants for f on A and B respectively.

Formally, there are initially 64 cases to consider depending upon whether or not u lies in A,
B or U (a total of 8 possibilities), and likewise for v. However, many of the formal possibilities
are inconsistent with the conditions that u and v belong to A U B. In particular, we cannot have
u ¢ A and u € B and we cannot have u € A, u € B, but u ¢ U D AN B. This brings us down to 5
possibilities each for u and v. Here is the list of possibilities for u:

[ul]] u¢ A,u€e Bandu g U
2] u¢g A,ue BandueU
[u3] u€ A,u g Band u g U
[ud) ue A,u g BandueU
[ubl ue A,ue BandueU

Of course, there is a similar list for v, and the set of all 25 possibilities is given by taking one from
each list.

Fortunately, separate arguments are not needed for each of the 25 cases. In particular, the
four cases obtained by combining the first two possibilities for u and v involve situations where
both points lie in B and therefore |f(u) — f(v)| < K3 |u — v|. Likewise, the nine cases obtained by
combining the last three possibilities for u and v involve situations where both points lie in A and
therefore |f(u) — f(v)| < K |u — v|.

This leaves us with twelve cases; six are given by taking one of the first two possibilities for u
and one of the last three possibilities for v, and six are given by switching the roles of v and v. If
we do the latter, we are down to six cases.

The cases [u2] + [v2] and [u2] + [v3] are situations where both point belong to U and therefore
|f(u) — f(v)] < Ko |u —v|. In each of the remaining cases, at least one of u or v does not belong
to U. Consider the continuous function on

((AUB)x (AUB)) -U xU

defined by the quotient
|/ (u) — f(v)]
lu—v|
Since the domain of this function is compact, it has a maximum value K3, and thus we have
|f(u) — f(v)| < K3|u —v| if (u,v) lies in the set described above.

If we take K to be the largest of the numbers K; for 0 < 7 < 3, then K will be a Lipschitz
constant for f on AU B



I1.2: Implicit and Inverse Function Theorems

(Conlon, Appendix B, §§ 2.4-2.5)

Additional exercises

_ g Y
f("Ll’y) - ($2+y27 $2+y2)

is locally invertible near every point except the origin. Compute the inverse explicitly.
SOLUTION.

Since the problem asks for an explicit computation of the inverse, one reasonable way to start
is to see what happens if one tries to solve the system of equations given in vector form by

u,v ==
’ a2 +y?" 2? +y?

(this is easier than writing out two separate equations for u and v in terms of z and y). Next, think
about what this map does geometrically. Given a nonzero point in the plane, it sends this point to
a positive multiple of itself; if as usual we write r? = z2 + y?, the exact multiple is 1/r?. Formally
one can see this by verifying the identity

1. Show that

1
2 2 _
R gy

Using this formula it follows immediately that f maps the nonzero points of the plane to themselves
in a 1-1 onto fashion and is equal to its own inverse. Since f is a C! function, it follows in particular
that the function is globally invertible on the set of nonzero points of the plane.m

2. Consider the map : R®> — R? defined by f(z,y,2) = (z,93,2%). Note that f has a
global inverse g despite the fact that D f(0) is not invertible. What does this imply about the
differentiability of g at 07

SOLUTION.

The map cannot be differentiable at the origin, for if it were then it would be an inverse to
Df(0) and the latter does not have an inverse. Of course the global continuous inverse to f is the
function g(u,v,w) = (u,v'/3, w'/%)..

3. Show that the mapping (u,v,w) : R® — R3 defined by u = z + e¥, v = y + €* and
w = z + €* is everywhere locally invertible.

SOLUTION.

Compute the Jacobian:

1 e 0
0 1 €| = 1+4€*V* £ 0.
e’ 1

4. Let f: R3 — Ri, and g : Ri’, — R32 be C! inverse functions. Show that

% 8(f21f3) J= a(flaf?af:i)

1
Oy J O(xa,13)’ 0(z1,22,73)

9



and obtain similar formulas for the other derivatives of coordinate functions of g.
SOLUTION.

By construction Dg and Df are 3 x 3 matrices that are inverse to each other. By Cramer’s
Rule, if B and A are mutually inverse 3 x 3 matrices, then

G292 Q23

1
b1,1
az2 G3.3

1= det A

and the formula for the partial derivative as a quotient ot two Jacobians follows immediately from
this. Similar considerations hold for all the partial derivatives of coordinate functions; since writing
things out would make the solution about eight times longer and the details are mechanical, we
shall not do so.m

5. Prove that F(z,y) = (e + vy,  — y) defines a C* homeomorphism of R? with a C*
inverse.

SOLUTION.

By the Inverse Function Theorem it suffices to show that F' is 1-1 onto C*° and has a nonzero
Jacobian everywhere. The C* condition is immediate, and one can compute the Jacobian directly:

. _pT
1 1 = e 1 < 0

e* 1‘

To show that f is 1-1 onto we need to show that for each choice of u and v there is a unique
solution to the system of equations

u = e"+y, v o= T—y.

Here is one way of doing so. If we add the two equations we find that z+e* = u+v. But the function
h(z) = z+e€® is a strictly increasing function whose limits at + oo are + oo respectively, and therefore
there is a unique inverse function k(z) : R — R that is infinitely differentiable. It follows that
z = k(u+v). Applying this to the second equation, we obtain the relation y = z —v = k(u+v) —v.
Therefore F' is 1-1 onto, and it is also C*° with everywhere nonvanishing Jacobian as required.m

6. Prove that F(z,y) = (ze¥ +vy, ze¥ —y) defines a C*° homeomorphism of R? with a C*®
inverse.

SOLUTION.
By the Inverse Function Theorem it suffices to show that F is 1-1 onto C°® and has a nonzero

Jacobian everywhere. The C* condition is immediate, and one can compute the Jacobian directly:

ey zxze¥+1
ey zxze¥ -1

‘:—2697&0

To show that f is 1-1 onto we need to show that for each choice of 4 and v there is a unique
solution to the system of equations

u = ze¥+y, v = ze¥ —y.

10



Here is an elementary way of doing so. Subtacting the second equation from the first shows that
y = (u — v)/2, and adding the two equations together yields

2z¢eY = u+tvwv.

Since we can solve uniquely for y, this equation shows that we can also solve uniquely for z.
Therefore F' is 1-1 onto, and it is also C*° with everywhere nonvanishing Jacobian as required.m

7. Prove that

F(xayaz) = (L-'_yeza

z
oy —2—yez,2yez+z>

24y

defines a C*® homeomorphism of R® with a C*® inverse.
SOLUTION.

Use the same approach as in the previous problem. The map is C* by construction, and its
Jacobian is the following 3 x 3 determinant:

1/2+y?) —2zy/2+y?)> +e*  ye?
1/2+y?) —2zy/(2+y?)? —¢  —ye?
0 2e* 2ye® +1

One can use row and column operations to simplify the computation before writing everything out
algebraically, but in any case the Jacobian is equal to

—2e?
2 + y?2

The next step is to show that one can find unique solutions to the system of equations

R ()
and here is a summary of how this can be done: Subtracting the second equation from the first
yields 2y e* = u — v, and by the third equation the left hand side is equal to w — z. Therefore we
can solve for z uniquely in terms of u, v and w. If we substitute this result into 2y e® = u — v we
also get a unique solution for y in terms of u, v and w. Finally, if we add the original first and
second equations we obtain u+v = 2x/(2+%?). Since we already know that we can solve uniquely
for y, this equation implies that we also get a unique solution for z terms of u, v and w.m

8. Let f(z,y) = (z + v,z +v). Check that f meets the conditions to have a local inverse
near f(1,0) = (1,1), and if g is this local inverse find Dg(1,1) without finding a formula for the
inverse function explicitly.

SOLUTION.

One again begin by writing down the Jacobian:

1 1
2z 1

‘ = 1-2x

11



The right hand side is nonzero at (1,0) and the derivative matrix D f(1,0) is equal to

11

2 1) °
By the Chain Rule, Dg(1,1) = [Df(1,0)]~!, and by either Cramer’s rule or one’s favorite matrix
inversion technique the latter is equal to

(5 4) -

9.  Consider the mapping f : R?> — R? given by f(z,y) = (22 + y2,2zy). Show that
the Jacobian vanishes on the lines y = £ 2. What is the image of f? [Hint: Try using polar
coordinates.| The Inverse Function Theorem guarantees that f has a local inverse at f(1,0) = (1,0).
Find the inverse explicitly and describe a region on which it is defined.

SOLUTION.

Once again, compute the Jacobian:

2z 2y

2 2
% 2 2(z" —y°)

This clearly vanishes on the lines y = £ 2. To find the image, use the hint to rewrite f(z,y) =
g[r, 8] = (r2,7%sin 2 #), where parentheses refer to rectangular coordinates and square brackets refer
to polar coordinates. The polar expressions tell us that the image consists of all points (u,v) for
which v > 0 and |v| < w.

To find the local inverse explicitly write u = 22 + y2 and v = 2zy. Solving this system of
simultaneous quadratic equations is essentially an exercise in high school algebra. Since we are
solving near (1,0) we may divide by z more or less freely. It turns out that the solution for z and
y in terms of u and v such that (z,y) = (0,1) when (u,v) = (0,1) is given by

U+ Vu2 — v2 v

r=\ T Y=g
We have not expressed z explicitly in terms of v and v in the second equation, but substitution
of the first equation into the second enables one to write y explicitly in terms of u and v. This
formula is valid for all (u,v) such that v > 0 and |v| < u.m

10. The following example shows why it is necessary to assume the continuity at a point in
the Inverse Function Theorem. Let f(t) = t + 2¢?sin(7) for ¢ # 0 and set f(0) = 0. Prove
that f'(0) =1, f’ is bounded on (—1,1), but f is not 1-1 on any neighborhood of 0.

SOLUTION.
The phrase “continuity at a point” means continuity of the derivative at a point.

By the additivity of derivatives, the first statement will be true if we can show that the function
1

g(t) = 2t? sin (1) satisfies ¢’'(0) = 0. Therefore we must consider

}ll,i—I)I%) 2h sin (%) )

12



But the expression on the right always lies between & 2 h and the limits of these functions as h — 0
is zero, so the limit which defines ¢’(0) must also exist and be equal to zero.

For similar reasons, proving the boundednes of f’ is also equivalent to proving the boundedness
of ¢'. If t # 0 this derivative is equal to

4t sin (1) — 2 cos (1)
an expression whose absolute value is clearly < 6 on the interval (0, 1).

Finally, f cannot be 1-1 on any neighborhood of 0 for the following reason. If it were differen-
tiable and 1-1 on some interval (—4, d), then the sign of the derivative would be either nonpositive
or nonnegative on the whole interval. Thus it suffices to prove that the derivative is both positive
and negative on an arbitrary small open neighborhood of 0. But f'(t) > 0if t = 4/(4k 7+ 1) and
f'(t) <0ift =1/(2k w4+ 1), so therefore f cannot be 1-1 on any neighborhood of zero.s

11. (i) Let W be open in R™, and let h : W — R* be continuous. Prove that h is smooth
if and only if there is an open covering V of W such that for each V,, in V the restriction f|V, is
smooth.

SOLUTION.

Smoothness at a point is defined in terms of the function’s behavior in a small open neighbor-
hood of each point, and this neighborhood can be chosen to be arbitrarily small. The hypothesis
implies that for each point one can find an open neighborhood on which the smoothness criterion
is satisfied. Therefore f is smooth at every point of W .a

(73) Let U and V be open in R", let f : U — V be a smooth surjective immersion/submersion,
and suppose that g : V' — RZ? is a continuous map such that g°f is smooth. Prove that ¢ is also
smooth.

SOLUTION.

One should add an assumption that f is onto; it is possible to construct counterexamples
otherwise (think about a function g that is smooth on an open subset U C V' but not smooth at
some point in V' — U, and take f to be the inclusion map.

Assuming f is onto, given z € V choose y € U such that f(y) = z. Then there are open
neighbhooods Uy of 4y and Vj of x such that f defines a diffeomorphism f, from Uy to V. Let h be
its inverse. Then g|Vy = (f|Up)°h and this factorization implies that g|V} is smooth. If we do this
for each z € V we obtain an open covering of V' by sets V,, such that ¢|V,, is smooth for all z. We
may now apply (i) to conclude that g is smooth.m

12. A continuous map f : A — X is a retract if there is a continuous map g : X — A such
that gof = ida. Suppose that A and X are open subsets of Euclidean spaces and f and g are
smooth. Prove that f is an immersion.

SOLUTION.

The derivative Did 4 is just the identity linear transformation on the ambient Euclidean space,
and therefore by the Chain Rule we have

I = Dg(f(x))-Df(z)
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for all x € A. Now if we are given any pair of matrices B and C such that C B = I, then it follows
that the the null space of B is the zero space, for Bv=0=0=1-0=C0=CBv=1v=nw.
Taking B = Df(xz), we conclude that the latter is always 1-1 and therefore f is an immersion.s

I1.3: Bump functions

(Conlon, §2.6)
Additional exercises

1. Let f : R — R be a smooth function of class " where 1 < r < oo, and let K be a
compact subset of R. Then there is a smooth C" function g : R — R such that g|K = f|K and ¢
vanishes off some compact set K’ containing K. [Hint: We can take K = [—a,a] and K' = [-b,b]
for some a, b such that 0 < a < b.]

SOLUTION.

Following the hint, we first show that we might as well assume K and K’ are intervals as
described there. If L is an arbitrary compact set, then since it is bounded it lies in some compact
set K = [—a,a]. If we can find a g such that g| K = f|K, then automatically we also have g|L = f|L.
Furthermore if the function g vanishes off some interval [—b, b] containing K, then it still vanishes
off some compact set containing L.

All we need to do now is take a bump function ¢ that is 1 on [—a,a] and 0 on [—b,b], and
take g to be the product of f and @.=

2. Suppose that A C R™ and f : A — R" is continuous. Suppose further that for each
a € A there is an open neighborhood V, of a such that f|A NV, extends to a smmoth function
on V,. Prove that there is an open set W containing A and a smooth function g : W — R such
that g|A = f. [Hint: Start with a locally refinement & of V = {V, } and a partition of unity
subordinate to U.]

SOLUTION.

Let g, be a smooth function on V, which agrees with f on V, N A, and for each U, choose V,
such that U, C V,. Let h, be the restriction of g, to U,, and let { ¢, } be a smooth partition of
unity subordinate to U. Then each function ¢, - h, extends smoothly to R™ by setting it equal
to zero outside U, (as usual, the function vanishes off a compact subset of U, and this suffices
to guarantee continuity). If we take g = > ¢4 - ho then g is a smooth function defined on a
neighborhood of A and z € A implies

9(x) = Y @alz) ha(z) = > palz)-flz) =

flz) - (Z soa($)> = fle)-1 = f(z)

so that g|A = f as required.=

3. The following exercise will be based upon an important result for uniform convergence
of infinite series to a differentiable function that follows from a more general result: Theorem
7.17 on pp.152-153 of BABY RUDIN: Suppose we are given a sequence of uniformly absolutely
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convergent smooth C* functions { f, } on an interval U such that Y., f} also converges uniformly
and absolutely. Then f is a smooth function and f' =5 f}.

(i) Explain why this result generalizes to smooth C! functions defined on an open set U C RY
for some g > 0 with f] replaced by Vf, (and vector length replacing the absolute value of a real
number).

SOLUTION.

We can apply the same method to show that the limit function f has continuous partial
derivatives in all directions and that

of . Ofn
— Iim —/—

Oz n—oo 0T,

for each j. But this means that f has continuous partials and hence f is a smooth C! function.m

(41) Let U C RY be open, and let F be a closed subset of U. Prove that there is a smooth C!
function h : U — R such that for all z € U we have h(z) = 0 <= z € F; i.e., in analogy with a
result about continuous functions on metric spaces, every closed subset of U is the zero set for some
smooth C! function on U. [Hints: Take the usual sort of locally finite countable open covering of
U — F by ordinary open disks such that shrunken disks of half the radius still cover U — F', and
let g be the smooth function defined on the k" disk using a bump function, where as usual g
extends smoothly to all of U by setting it equal to zero off the disk. Choose positive constants My,
such that |gx| and |Vgy| are both bounded from above by M}, and set

hzzﬁ.
k

Explain why h is a smooth C! function and the zero set of h is equal to F'.]
SOLUTION.

If we follow the hint it is only necessary to show the claims in its final sentence. To see that
the zero set is equal to F, note that z ¢ F' implies that some bump function g (z) is nonzero, and
hence the sum of all the nonnegative numbers g;(x) must be positive. By the observations of the
first part of this exercise, this infinite sum will be a smooth C! function if the sum

1
G = Z (Mk.gk)'vgk
k

converges absolutely. However, by construction we know that

1 1
> () 170l < T -

k k

and this implies the uniform convergence of G.u
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I1.4: Vector fields and integral flows

(Conlon, §§2.7-2.8, Appendix C.1-C.3)
Additional exercises

1. Find the flow associated to the vector field on R? given by

9 _ 39
Yor Y oy’

SOLUTION.

In the language of undergraduate differential equations courses, this translates to the system
' =y, y' = —y>. The second equation is separable and the first is obtainable by finding an
“indefinite integral.” However, a little care will be needed to write out the general solutions for

reasons that will become apparent during the process of finding solutions.

Let’s start with the second equation. The standard procedure for finding 4 begins by consid-

ering

1 dy

y3 dt
which leads to the solution 1/y? = 2(C — t) where C is a constant of integration. Taking square
roots we find that y = +1/4/2 (C — t). Note that the manipulations leading to this solution tacitly
assumed y # 0 in order to rewrite the equation in the displayed form. Fortunately, this is only a
minor problem because the unique solution to y’ = y* with initial condition y(0) = 0 is the zero
function; we need to remember this when it is time to write down general formulas.

We now want to write the solutions to ¢’ = —* in terms of ¢ and the initial condition v = y(0).
This means we must solve for the constant of integration C in terms of v. By direct substitution

we know that
v = x+/2(C)

and this implies C = 1/(2v?). Note that this requires the initial condition v to be nonzero. If we
substitute this value for C' and rewrite the solutions slightly we obtain the following expression for

the solution:

+ V202
V2 —2v2t
Although this formula was obtained for the case v # 0, it also works if v = 0 for trivial reasons (as
noted before, the solution then is identically zero). The only remaining problem is to determine
the choice of sign. However, this is straightforward by the relation y(0) = v; specifically, we must
choose the signs so that +£+vv? = v. Therefore the second component of the integral flow map
®(t;u,v) is given by

v \/i

V2 — 212t

y(t) =

y(t) =

and this works even if v = 0.

We must now describe the first coordinate using the relation ' = . One way to start is to
compute an indefinite integral:

+dt 1
z(t) = 7/@:?\/@4‘3:—74’3
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Here B is a second constant of integration and once again we are assuming that y # 0 (we already
know what happens if y = 0; in this case the value of the vector field is 0 and the solution is a
constant curve). We may solve for the constant of integration B in terms of the initial condition
u = y(0) exactly as before to obtain the formula

B = u +

; .
This implies that the first coordinate of the flow map ®(t;u,v) is given by the following formula:

vV2
V2 —2v%t

If we combine all these obseervations we conclude that ®(¢;u,v) = (z(t), y(t) ) where z(¢) and y(¢)
are given as above.n

1
t) = - —
z(t) u+U

2. Find the flow associated to the vector field on R? given by

SOLUTION.

In this case the system one obtains is ' = ay, 3’ = —az, and 2’ = —a?. The third equation
is independent of the others, and the general solution is z = —a?t + K where K is a constant of
integration. The other two yield the second order differential equation z"” = —a? z, whose general
solution is B cos at + C sin at where B and C are constants of integration. We can then substitue
to find that y = —B sin at + C cos at.

As in the previous exercise, in order to give a formula for the flow we need to solve for the
constants of integration in terms of u = z(0), v = y(0) and w = 2(0). Elementary substitution
shows that (B,C, K) = (u,v,w), and hence the flow for this equation is given by

®(t;u,v,w) = (ucosat + vsinat, —usin at + v cos at, w — a’t) .=

3. Find the flow associated to the vector field on R? given by

2 +z£ -I-a:2
Yor Oy 0z

SOLUTION.

Straightforward manipulation of the equations in this system leads to the equations z"” = z
and z"" = z. The latter is an ordinary third order homogeneous equation with constant coefficients
that we can solve by standard undergraduate methods. The latter show that the general solution
has the form

z = Ae' + Bexp(—t/2) cos(1tV3) + C exp(—t/2) sin(1tv3)
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where A, B, C are constants of integration. We can relate them to the initial values u,v,w by the
identities u = z(0), v = y(0) = 2’(0) and w = z(0) = z’’(0). This yields three equations in the
constants of integration:

u = A +B + C

v = A- 1B+ L1V3.C
w=A-1B- (1+}v3).C

Instead of writing out everything explicitly, we shall simply indicate how one retrieves the general
solution from these data. Solving this system for the constants of integration in terms of u, v, w
yields a formula for z(¢) in terms of the latter; this is the first coordinate of the flow mapping
®(t,u,v,w). The second coordinate may then be obtained by differentiating z(¢) and using the
formula z' = y, and the third coordinate may be found similarly by differentiating y(t) and using
the formula z = /.=

4. Let T: R™ — R"” be a linear transformation that has a basis of eigenvectors { v; } with
associated eigenvalues \;. Given a vector x € R", express x as a linear combination -, ¢;x;.
Verify that

vt) = ) cjexp(At)v;
J
is a solution to the differential equation y’ = T'(y) with initial condition x(0) = x.
SOLUTION.
Direct computation yields the following formula for ' (¢):
V) = D e exp(Ab) vy
J

This is exactly the same expression that one gets by evaluating T'°v(t). Checking the initial
condition we find that

v0) = D cexp0-t)x; = > %, = X
i i

and hence the initial conditiion is x(0) = x as required.=

5. Show that the differential equation 3’ = y2/3 with initial condition y(0) = 0 has infinitely
many solutions. [Hint: Consider the functions y such that y(t) = 0 for ¢ < a and y(t) = (¢t — a)3
for ¢ > a. Some care is needed to compute the derivative of this function at ¢t = a.]

SOLUTION.

First of all, the hint should be corrected as above, so that we are considering functions y, such
that y,(t) =0 for t < a and y(t) = (t — a)3 for t > a.

Simple compuatations show that all the functions in the hint satisfy the differential equation
when ¢t # a. At t = a the differential equation will be satisfied if and only if y, is differentiable
there and y'(a) = 0. To prove this it is necessary to consider each of the left and right hand limits

separately:
e JO-f@ L ) - ()
t—a+ t—a ’ t—a— t—a
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The formulas for these quotients are different, but each of the limits is equal to zero.m
6. Here is a slightly different application of the Contraction Lemma to a boundary value
problem in the theory of differential equations.

(7) Suppose that F' : [a,b] x R — R is Lipschitz and K is a Lipschitz constant for F'. Define
a Green’s function G : [a,b] X [a,b] — R by setting

(t—(g)(b)—s) t<s
G(S,t) = { (s—a)(b—t) s<t.

b—a —

Note that this function is discontinuous on the diagonal but still integrable. Verify that a continuous
function y on [a,b] satisfies y(t) = f: G(t,s) F(s, y(s))ds if and only if it satisfies the boundary
value problem 3" + F(t,y) = 0, y(a) = y(b) = 0.

SOLUTION.
Details for this entire exercise may be found on pages 188-193 of the following reference:

P. Waltman. A Second Course in Elementary Differential Equations. Academic
Press, Orlando, FL, 1986. ISBN: 0-12-733910-8.

(i) Show that [ |G(t,s)|ds < (b— a)2/4.
SOLUTION.
See (i).m

(447) Show that if b — a is so small that K (b — a)?/4 < 1, then there is a unique solution to
the boundargy value problem y” + F(t,y) = 0, y(a) = y(b) = 0. [Hint: Define T by Tp(t) =
f; G(t,s) F(t, ¢(t)) ds and show that T satisfies the hypothesis of the Contraction Lemma.]

SOLUTION.

See (i) again. The same book outlines another boundary value problem that can be solved
similarly (see Exercises 67 on pages 193-194).u
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