SOLUTIONS TO EXERCISES FOR
MATHEMATICS 205C — Part 3

Fall 2003
I1I1. Global theory of smooth manifolds and mappings

IT1.1: Basic definitions and examples

Additional exercises

1. Let £ be the smooth C* atlas on R whose only chart is the identity, let h : R - R
be the map defined by h(x) = z3, and let £, be the C* atlas for R whose sole chart is (R, h).
Prove that the map h : (R,&) — (R, &) is a diffeomorphism even though 4 : (R,&) — (R,€) is
a smooth map whose inverse is not smooth. — Generalize this result to an arbitrary continuous
map (U,E) — (U, &) where h is open in R™ and h is a homeomorphism from U to itself.

SOLUTION.

By the weak criterion, to check the smoothness of a map f it is enough to find a covering
collection of charts in the atlases having the form (U,, hy) and (V3, kg) such that f(h(U,)) C V3
and “k~1fh” is smooth. In this situation we only need one chart each for the domain and codomain;
namely, (R,idg for £ and (R, h) for &,. In this case the local composite reduces to h~*°h = idgr
Therefore the map h is smooth with respect to the given smooth structures. Consider now the
inverse map h~! : (R, &) — (R,£); in this case one can proceed similarly and see that the local
map given by the same charts is again A= °h.

More generally, if h is an arbitrary homeomorphism from and open subset U C R” to itself,
then h : U — U defines a diffeomorphism from (U, &) to (U, &), regardless of what smoothness
properties h or its inverse might possess.n

2. Let 1 < s < r < o0, and let (M, A) be a smooth C" manifold where A is the maximal
the notes we stated that A is also a C* atlas but not a maximal C*-atlas. Prove the second part
of this assertion. [Hint: There is a smooth C* diffeomorphism of R™ that is not a smooth C"
diffeomorphism by results in the notes. Why is the analogous statement true if R" is replaced by
an open disk in R™? Use this to add extra charts to A such that the larger object is still a smooth
C*® atlas.]

SOLUTION.

Follow the hint. The last result in Section II.1 constructs a diffeomorphism f from R to itself
that is C” but not C"*1. Since the inverse tangent map defines a C* map from R. to the open

interval (=%, T), the map arctan(h(tanz) ) defines a C" diffeomorphism of (-7, 7) to itself that

is not C"t1. If ¢ is the diffeomorphism so constructed, then we may construct a diffeomorphism

go of any open interval (—¢,¢) to itself by taking go = T°g°T~!, where T is the unique linear
s s

homeomorphism from (=%, %) to (—¢,¢). Taking repeated products of this map with the identity

on the latter interval we obtain a C" difftomorphism from (—¢,e)™ to itself that is not C"*1.
Similarly, if x is an arbitrary point in R"™ with coordinates z;, we have a C" diffeomorphism from

[1; (zj —&,2; + €)™ to itself that is not C"*1.



Suppose now that we have a typical chart (U,h) in our maximal C* atlas where s > r. If we
restrict to any open subset V' C U, then by maximality of the atlas we also know that (V,h|V)
is a smooth chart. Take V to be an open hypercubical region as in the previous paragraph, and
consider the new chart

(V, (hIV)°g0) -

This cannot lie in the maximal C* atlas because the map “(h|V)~1e(h|V)°gy”"= go is not C"*1.
However, we claim that if we add this new chart to the maximal C"*! atlas we obtain a C" atlas
that properly contains the maximal C"*! atlas. To keep the notation concise let us denote the new
chart by (V. 2).

We need to show that if (W, k) is any other chart in the maximal C"*! atlas then the composite
“k=1¢” is smooth of class C". But this follows because the latter map is given by the composite of
the C* map “6k~'h and the C" map go.=

3. This exercise asks for a verification of a statement in the discussion of lens spaces. We
recall the basic setting: Given a finite cyclic group Zj of order k, and a positive integer n, let
(m1, -+ ,my) be an ordered n-tuple of positive integers less than k such that each m; is prime to

k. Then a topological action of Z;, on §2"~! C C"” = R?" is defined by the formula

gj(zla Tty 2n = (Oém1

m
2y e 0™ 2,)

where g denotes a standard generator of Zy, and o = exp(2mi/k). Prove that this is a free action
on C" —{0}; i.e., g’z # 2 if j # 0(k) and z # 0.

SOLUTION.

This just reduces to a standard fact about vectors: If we are given a scalar ¢ and a vector v
then ¢v = v if and only if c = 1 or v = 0. In our case ¢ = ¢? where g = exp(2mmni/k) and m is
relatively prime to k, so that g7 = 1 if and only if jm = 0(k) which is equivalent to j = 0(k).m

4. THE PROOF OF THIS EXERCISE WILL BE DEFERRED.

5. Let M and N be smooth manifolds, and let h : M — N be a continuous mapping. Prove
that h is smooth if and only if for each open subset V' C N and each smooth function f: V — R
the composite “f°h”: h=}(V) — R is smooth.

SOLUTION.

First of all, if V is an open subset of N then A defines a continuous mapping hy : h=1(V) — V;
we claim this map is smooth if h is smooth. This is true because h|h~!(V) is smooth and its image
is contained in the open subset V' C N. It follows that if A is smooth then f°(h|h=1(V)) is smooth.

Conversely, suppose that A is continuous and for each smooth function f : V' — R the com-
posite fo(hlh™1(V)) is smooth. Suppose that V is an open set that is the image of a smooth
coordinate chart (W, k). Denote the standard coordinate functions on W by z;; it then follows that
wj = zj ok~1 is a smooth real valued function on V', and by hypothesis the latter in turn implies
that the composite w;°hy is smooth for all j. However, this means that the coordinates of the
vector valued function k~1¢hy are all smooth, which means that k=1 (h|h=1(V)) itself must be
smooth.

If we now take an open covering of N by images V,, of coordinate charts, the reasoning of the
preceding paragraphs shows that the restrictions of h to each of the sets h=1(V,) are smooth. Since
these inverse images form an open covering, it follows that A itself is smooth.m
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6. DISREGARD THIS PROBLEM.

IT1.2 : Constructions on smooth manifolds

(Conlon, §§1.7, 3.7)
Additional ezercises

1. (1) Let X, Y and Z be smooth manifolds and let x denote the usual cartesian product.
Prove that
X x (Y x Z)

is a direct product of smooth manifolds as defined in the notes.
SOLUTION.
This is a special case of Exercise 3.u

(74) Let A, B, C and D be smooth manifolds and let x denote the usual cartesian product.
Prove that
(Ax B) x (CxD)

is a direct product of smooth manifolds as defined in the notes.
[Note: These may all be viewed as special cases of a more general result.]
SOLUTION.
This is also a special case of Exercise 3.u

2. Let X and Y be smooth manifolds and let 7: X XY — Y X X be the “twist map”
which sends (z,y) to (y,z) for all z and y. Prove that 7 is a diffeomorphism. [Hint: Consider the
analogous map 7/ : Y x X - X x Y]

SOLUTION.

The proof is nearly the same as the proof of the corresponding result in Section 1.4, the
main difference being thatone must substitute “smooth manifold,” “smooth mapping” and “diffeo-
morphism” for “topological space,” “continuous function” and “homeomorphism” throughout the
discussion.m

(13) Let X be a smooth manifold and let T : X x X x X — X x X x X be the map that
cyclically permutes the coordinates: T'(z,y, 2) = (z,z,y). Prove that T is a diffeomorphism. [Hint:
What is the test for smoothness of a map into a product? Can you write down an explicit formula
for the inverse function?]

SOLUTION.

The proof is nearly the same as the proof of the corresponding result in Section 1.4, the
main difference being thatone must substitute “smooth manifold,” “smooth mapping” and “diffeo-
morphism” for “topological space,” “continuous function” and “homeomorphism” throughout the
discussion.m

3. (“A product of products is a product.”) Let {A, | @ € A} be a finite family of
smooth manifolds, and let A = U{Ag | f € B} be a partition of A. Construct a diffeomorphism
from [[{As | @ € A} to the set

[I{T{A4a | e € 45} } .
B
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SOLUTION.

The proof is nearly the same as the proof of the corresponding result in Section 1.4, the
main difference being thatone must substitute “smooth manifold,” “smooth mapping” and “diffeo-
morphism” for “topological space,” “continuous function” and “homeomorphism” throughout the
discussion.m

4. Let A be some nonempty set, let {X, | a € A} and {Y, | @ € A} be finite families of
smooth manifolds, and for each a € A suppose that f, : X, — Y, is a diffeomorphism. Prove that

the product map
II 7« : [[ X« — %
(67 (67 (6%

is also a diffeomorphism. [Hint: What happens when you take the product of the inverse maps?]
SOLUTION.

The proof is nearly the same as the proof of the corresponding result in Section 1.4, the
main difference being thatone must substitute “smooth manifold,” “smooth mapping” and “diffeo-
morphism” for “topological space,” “continuous function” and “homeomorphism” throughout the
discussion.m

5.  Prove that R® — {0} is diffeomorphic to S*~! x R.
SOLUTION.

Let m; and 75 denote the projections from S™~! x R onto S”~! and R respectively. Define a
smooth map f from R™ — {0} to S"~! x R such that m1°f(v) = |v|! - v and m° f(v) = log|v|.
Similarly, define a smooth map g in the opposite direction by g(w, t) = e’ - w. Direct computation
then show that feg(w, t) = (w, t) and g° f(v) = v, so that f and ¢ are inverse to each other.m

I11.3: Smooth approximations
(Conlon, §§3.5, 3.8)
Problems from Conlon, pp. 116 — 117

3.8.3.

SOLUTION.

This is completed in Subsection I11.3.3 of the lecture notes.n
3.8.5.

SOLUTION.

Let Diff.(M) be the group of diffcomorphisms that are the identity off some compact set. We
need to show that this is a subgroup of the full group of diffeomorphisms.

Following Conlon, the support of a diffeomorphism f is the closure of the set of points where
f(z) # z. We shall call this set Supp(f).-

First of all Diff .(M) contains idys because Supp(idas) = 0.
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Next, suppose that f,g € Diff.(M). If z ¢ Supp(f) U Supp(g) then f(z) = g(z) = z so that
g° f(z) = z. Therefore we have

Supp(g°f) C Supp(f) U Supp(g)

and since the right hand side is a union of two compact sets it follows that the left hand side is
compact. Therefore we have g° f € Diff .(M).

Finally, if f € Diff.(M), then f(z) # z <= = # f~1(z), so that

Supp(f) = Supp(f~')

and consequently f~! € Diff,(M).=
3.8.6.
SOLUTION.

We need to show that compactly supported isotopy is an equivalence relation on the group
in the previous problem. By results in Section II1.3 we might as well assume that these smooth
isotopies are strongly admissible.

A diffeomorphism f € Diff (M), is compactly supported isotopic to itself because the suppport
of the trivial isotopy H : M x [0,1] — M defined by H(z,t) = f(x) has the same compact support

as f.

Suppose that f is compactly supported isotopic to g and H is a compactly supported isotopy.
If H* : M x [0,1] — M is defined by

H*(z,t) = H(z,1-1)

then H* is a smooth compactly supported isotopy from g to f and the support of H* is equal to
the (compact) support of H.

Suppose that f is compactly supported isotopic to g with compactly supported isotopy H
and g is compactly supported isotopic to h with compactly supported isotopy K. Then one has a
smooth isotopy L from f to h defined by H on M x [0, 3] and by K on M x [3,1], and the support
of this isotopy is the union of the (compact) supports if H and K. — Combining these, we see that
compactly supported isotopy is an equivalence relation.m

Further conclusions. The equivalence class of the identity is a normal subgroup and the
other equivalence classes are cosets of that subgroup. Details are left to the reader (one needs to
show that the equivalence class of the identity is closed under multiplication, taking inverses, and
conjugation by an arbitrary diffeomorphism with compact support — in fact, it is closed under
conjugation with respect to an arbitrary diffeomorphism, for the support of A=t foh is the image
of the support of f under h=!).u

Additional ezercises
1. Suppose that f : R — R is a diffeomorphism.
(1) Why is the derivative f’ always positive or always negative?
SOLUTION.
The derivative is always nonzero because ¢'(f(z))- f'(z) = 1 by the Chain Rule. If it were both

positive and negative then by the Intermediate Value Property it would be zero somewhere. In
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our situation smoothness implies that the derivative is continuous so we can use the usual Interme-
diate Value Theorem for continuous functions, but everything goes through for any differentiable
functions because derivatives always have the Intermediate Value Property.m

(7¢) Prove that f is smoothly isotopic to the identity if f’ is always positive and smoothly
isotopic to minus the identity if f’ is always negative. [Hints: It will simplify things to note first
that one can find a diffeomorphism isotopic to f such that f(0) = 0. If f' > 0, what can one say
about the straight line homotopy from f to the identity?]

SOLUTION.

Let 9 : R — R be a smooth map taking values in [0, 1] such that v is nondecreasing and there
is some € > 0 such that 9 = 0 for t < € and 9 = 1 fort > 1 — ¢. Define a strongly admissible
smooth isotopy A such that A(z,t) = f(z) + (1 —+(¢))f(0); then the diffeomorphism Ay given by
Al|bfR x {0} is equal to f and the diffeomorphism A; given by A|R x {1} satisfies A;(0) = 0. This
verifies the first point in the hint. Let g = A;; it will suffice to show that g satisfies the conditions
in the exercise. shall

Now define another homotopy by

B(z,t) = (1-9@)g(=) + ¢()- oz

where o is the sign of ¢'(x), which we know is the same for all values of z. It follows immediately
that the first partial derivative of this function is always nonzero, and in fact the sign of the first
partial derivative is equal to the sign ¢; this merely reflects the fact that if u and v are nonzero
real numbers with the same sign, then the closed interval with endpoints v and v does not contain
the origin. This implies that each map B|R x {t} is strictly increasing and therefore is 1-1. To see
that each B; is onto, by the Intermediate Value Theorem it suffices to show that

m_l)lgloo Bi(z) = fox.

Since g is a diffeomorphism we know this holds for ¢ = 0. Let M > 0 and assume that o = +1.
Then there is a K > 0 such that z > K or z < —K implies g(z) > M or g(z) < —M. Therefore if
L is the larger of K and M, then z > L or z < —L implies B;(z) > M or B;(z) < M. Therefore in
this case we have shown that g is smoothly strongly admissibly isotopic to the identity. We could
dispose of the case where o = —1 similarly, but it is faster to let A = o - g and use the case already
established to prove that h is smoothly strongly admissibly isotopic to the identity. If B is the
relevant isotopy, then o - B will be a smoothly strongly admissible isotopy from g to o times the
identity.m

(4i7) Prove that every diffeomorphism of S? to itself is smoothly isotopic to either the identity
or complex conjugation.

SOLUTION.

Given a diffeomorphism f of S to itself, we can lift it to a smooth map F from R to itself.
In fact, given a real number ¢, such that exp(27ity) = f(1) we can find a smooth lifting such that
F(0) = to. Similarly, if g is the inverse to f we can find a unique lifting G such that G(ty) = 0,
and in fact F' and G are inverses to each other. Note that both F' and G satisfy the basic condition
H(t+n)= H(t) + A - n for all integers n, where A is some integer.

We claim that A = +1; perhaps the fastest proof of this is that A corresponds to the degree of
f or g and the degree of a homeomorphism is always &+ 1. Of course the sign is closely related to the
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sign of the derivative of F. If C' is one of the isotopies constructed as in the preceding part of the
exercise for our special choice of F, then it follows immediately that C(z,t +n) = C(z,t) + A - n.
Therefore C' passes to a continuous map D from S* x [0, 1] to S*, and by construction this map on
the quotients is a strongly admissible smooth isotopy if each map D; is 1-1 and onto. One quick
way of checking this is to note that C; must map an interval (a,a + 1) to another interval (b,b+ 1)
in a 1-1 onto fashion, for the latter implies that D; must be 1-1 onto.

2. Let M be a smooth manifold. Two diffeomorphisms f and g from M to itself are said to
be smoothly concordant or pseudo-isotopic if there is a homeomorphism H from M x [0, 1] to itself
with the following properties:

(1) The homeomorphism sends M x {0} to itself by f and M x {1} to itself by g.
(2) The homeomorphism is a diffeomorphism on M x (0,1).

(3) For each x € M there is an open neighborhood U and an ¢ > 0 such that the restrictions
of H to U x [0,¢) and U X (e, 1] depend only on the first variable. (If M is compact this
is equivalent to saying that H is given by f on some open set of the form M x [0, ) and
by g on some open set of the form M x (1 —§,1].)

Prove that concordance defines an equivalence relation on diffeomorphisms of M and that
isotopic diffeomorphisms are concordant. [The difference is that a concordance does not send the
level submanifolds M x {t} into themselves. Determining the relation between concordance and
isotopy is a deep and difficult question that was essentially answered in the nineteen seventies by
A. Hatcher and J. Wagoner for manifolds of sufficiently large dimension.]

SOLUTION.

The proof of this proceeds very much like the arguments for smooth homotopies.n

II1.4: Amalgamation theorems

(Conlon, §1.3)
Additional exercises

1. Let {A, | a € A} be a family of topological spaces, and let X =[], A,. Prove that X is
locally connected if and only if each A, is locally connected.

SOLUTION.

(= ) If X is locally connected then so is every open subset. But each A, is an open subset,
so each is locally connected.m

( <= ) We need to show that for each z € X and each open set U containing z there is an
open subset V' C U such that z € V and V is connected. There is a unique « such that z = i,(a)
for some a € A,. Let Uy = i;*(U). Then by the local connectedness of A, and the openness of Uy
there is an open connected set Vy such that z € Vo C Up. If V = i,(V}), then V has the required
properties.m

2. In the preceding exercise, formulate and prove necessary and sufficient conditions on A and
the sets A, for the space X to be compact.

SOLUTION.



X is compact if and only if each A, is compact and there are only finitely many (nonempty)
subsets in the collection.

The ( = ) implication follows because each A, is an open and closed subspace of the compact
space X and hence compact, and the only way that the open covering { A, } of X, which consists
of pairwise disjoint subsets, can have a finite subcovering is if it contains only finitely many subsets.
To prove the reverse implication, one need only use a previous exercise which shows that a finite
union of compact subspaces is compact.m

3. Prove that RP? can be constructed by identifying the edge of a M&bius strip with the edge
circle on a closed 2-dimensional disk by filling in the details of the following argument: Let A C S2 be
the set of all points (z,y,2) € S? such that |z| < 1, and let B be the set of all points where |z| > 1.
If T(z) = —z, then T(A) = A and T'(B) = B so that each of A and B (as well as their intersection)
can be viewed as a union of equivalence classes for the equivalence relation that produces RP?. By
construction B is a disjoint union of two pieces By consisting of all points where sign(z) = £1, and
thus it follows that the image of B in the quotient space is homeomorphic to B, = D?. Now consider
A. There is a homeomorphism & from S? x [~1,1] to A sending (z,y,1t) to (a(t)z, a(t)y, 3t) where

and by construction h(—v) = —h(v). The image of A in the quotient space is thus the quotient of
S1 x [—1,1] modulo the equivalence relation u ~ v <= u = 4wv. This quotient space is in turn
homeomorphic to the quotient space of the upper semicircular arc Si (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (—1,0,¢) equivalent to (1,0, —t),
which yields the Mabius strip. The intersection of this subset in the quotient with the image of B is just
the image of the closed curve on the edge of B, which also represents the edge curve on the Mobius
strip.

FURTHER DETAILS.
We shall fill in some of the reasons that were left unstated in the sketch given above.

Let A C S? be the set of all points (z,y,z) € S? such that |z| < , and let B be the set of all
points where |z| > . If T(z) = —z, then T(A) = A and T(B) = B [etc.]

This is true because if T'(v) = w, then the third coordinates of both points have the same
absolute values and of course they satisfy the same inequality relation with respect to %

By construction B is a disjoint union of two pieces By consisting of all points where sign(z) =
+1

b

This is true the third coordinates of all points in B are nonzero.

There is a homeomorphism h from S* x[—1,1] to A sending (z,y,1) to (a(t)z, a(t)y, 1t) where

alt)s = M

One needs to verify that h is 1-1 onto; this is essentially an exercise in algebra. Since we are
dealing with compact Hausdorff spaces, continuous mappings that are 1-1 onto are automatically
homeomorphisms.



This quotient space [S! x [—1, 1] modulo the equivalence relation u ~ v <= u = +v)| is in turn
homeomorphic to the quotient space of the upper semicircular arc Sj_ (all points with nonnegative
y-coordinate) modulo the equivalence relation generated by setting (—1,0,t) equivalent to (1,0, —t),
which yields the Mobius strip.

Let A and B be the respective equivalence relations on S} x [—1,1] and S* x [—1,1], and let A
and B be the respective quotient spaces. By construction the inclusion St x [-1,1] € St x [-1,1]
passes to a continuous map of quotients, and it is necessary and sufficient to check that this map
is 1-1 and onto. This is similar to a previous exercise. Points in S! — S_l}_ all have negative second
coordinates and are equivalent to unique points with positive second coordinates. This implies
that the mapping from A to B is 1-1 and onto at all points except perhaps those whose second
coordinates are zero. For such points the equivalence relations given by A and B are identical, and
therefore the mapping from A to B is also 1-1 and onto at all remaining points.m

4. Suppose that the topological space X is a union of two closed subspaces A and B, let
C=ANB,let h:C — C be a homeomorphism, and let A U B be the space formed from A LI B by
identifying € C C A with h(z) € C C B. Prove that AU, B is homeomorphic to X if h extends to a
homeomorphism H : A — A, and give an example for which X is not homeomorphic to AU, B. [Hint:
Construct the homeomorphism using H in the first case, and consider also the case where X = S* 1151,
with Ay == S1 U S1; then C = {£1} x {1,2}, and there is a homeomorphism from h to itself such
that A4 Uy, A_ is connected.]

SOLUTION.
We can and shall view X as A Uyq B.

Consider the map Fy : ALIB — AU B defined by H=! on A and the identity on B. We claim
that this passes to a unique continuous map of quotients from X to AUy, B; i.e., the map F; sends
each nonatomic equivalence classes { (c, 1), (¢,2) } for X = AU;q B to a nonatomic equivalence class
of the form { (u, 1), (h(u),2)} for AU, B. Since Fy sends (c,1) to (h=1(c),1) and (c,2) to itself,
we can verify the compatibility of Fy with the equivalence relations by taking u = h=!(c). Passage
to the quotients then yields the desired map F : X — A U, B.

To show this map is a homeomorphism, it suffices to define Specifically, start with Gy = Fo_l,
so that Go = H on A and the identity on B. In this case it is necessary to show that a nonatomic
equivalence class of the form { (u, 1), (h(u), 2) } for AU}, B gets sent to a nonatomic equivalence class
of the form {(c,1),(c,2)} for X = A Ujq B. Since Gy maps the first set to { (h(u),1), (h(u),2) }
this is indeed the case, and therefore GG also passes to a map of quotients which we shall call G.

Finally we need to verify that F' and G are inverses to each other. By construction the maps
Fy and Gy satisfy F([y]) = [Fo(y)] and G([z]) = [Go(z)], where square brackets denote equivalence
classes. Therefore we have

G°F([y]) = G ([Fo(y)]) = [Go (Fo(y))]

which is equal to [y] because Fy and Gy are inverse to each other. Therefore G°F is the identity
on X. A similar argument shows that F'°G is the identity on A U, B.

To construct the example where X is not homeomorphic to A Uy, B, we follow the hint and
try to find a homeomorphism of the four point space {1} x {1,2} to itself such that X is not
homeomorphic to A Uy, B is connected; this suffices because we know that X is not connected.
Sketches on paper or physical experimentation with wires or string are helpful in finding the right
formula.



Specifically, the homeomorphism we want is given as follows:

(-1,1)e A, — (1,2) € A_
(1,1)e A, — (1,1) € A_
(1,2) €Ay, — (-1,1) € A_

(-1,2) e Ay — (-1,2) € A_

The first of these implies that the images of S} x {2} and S x {1} lie in the same component of
the quotient space, the second of these implies that the images of S x {1} and S% x {1} both lie
in the same component, and the third of these implies that the images of S x {2} and St x {2}
also lie in the same component. Since the entire space is the union of the images of the connected
subsets S} x {1} and S} x {2} it follows that A U, B is connected.

FOOTNOTE.

The argument in the first part of the exercise remains valid if A and B are open rather than
closed subsets.m

5. One-point unions. One conceptual problem with the disjoint union of topological spaces
is that it is never connected except for the trivial case of one summand. In many geometrical and
topological contexts it is extremely useful to construct a modified version of disjoint unions that is
connected if all the pieces are. Usually some additional structure is needed in order to make such
constructions.

In this exercise we shall describe such a construction for objects known as pointed spaces that are
indispensable for many purposes (e.g., the definition of fundamental groups as in Munkres). A pointed
space is a pair (X, x) consisting of a topological space X and a point z € X; we often call x the base
point, and unless stated otherwise the one point subset consisting of the base point is assumed to be
closed. If (Y,y) is another pointed space and f : X — Y is continuous, we shall say that f is a base
point preserving continuous map from (X, z) to (Y,y) if f(z) = y, In this case we shall often write
f:+(X,z) = (Y,y). Identity maps are base point preserving, and composites of base point preserving
maps are also base point preserving.

Given a finite collection of pointed spaces (X;, z;), define an equivalence relation on [, X; whose
equivalence classes consist of [[;{z;} and all one point sets y such that y ¢ [[,{z;}. Define the one

point union or wedge
n

V(Xjaxj) = (Xlaxl)v V(Xn,xn)

=1

to be the quotient space of this equivalence relation with the quotient topology. The base point of this
space is taken to be the class of [ {z;}.

(a) Prove that the wedge is a union of closed subspaces Y; such that each Y} is homeomorphic to
X; and if j # k then Y; NY} is the base point. Explain why Vy, (X}, z) is Hausdorff if and only if each
X is Hausdorff, why Vj, (Xj, ) is compact if and only if each X; is compact, and why Vj (X}, zx)
is connected if and only if each X is connected (and the same holds for arcwise connectedness).

SOLUTION.

For each j let in; : X; — [], X} be the standard injection into the disjoint union, and let
P: HXk — \/(Xk,.’IIk)
k k
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be the quotient map defining the wedge. Define Y; to be P°in;(X;). By construction the map
Prcin; is continuous and 1-1; we claim it also sends closed subsets of X; to closed subsets of the
wedge. Suppose that F' C X; is closed; then Pein;(F) is closed in the wedge if and only if its
inverse image under P is closed. But this inverse image is the union of the closed subsets in;(F’)
and [],{zx} (which is a finite union of one point subsets that are assumed to be closed). It follows
that Y; is homeomorphic to X +j. The condition on Y, NY} for k # £ is an immediate consequence
of the construction.

The assertion that the wedge is Hausdorff if and only if each summand is follows because a
subspace of a Hausdorff space is Hausdorff, and a finite union of closed Hausdorff subspaces is
always Hausdorff (by a previous exercise).

To verify the assertions about compactness, note first that for each j there is a continuous
collapsing map ¢; from Vj (X, zr) to (X;,z;), defined by the identity on the image of (X;,z;)
and by sending everything to the base point on every other summand. If the whole wedge is
compact, then its continuous under g;, which is the image of X;, must also be compact. Conversely
if the sets X; are compact for all j, then the (finite!) union of their images, which is the entire
wedge, must be compact.

To verify the assertions about connectedness, note first that for each j there is a continuous
collapsing map g; from Vy, (X, zi) to (X;,z;), defined by the identity on the image of (X, z;) and
by sending everything to the base point on every other summand. If the whole wedge is connected,
then its continuous under g;, which is the image of X;, must also be connected. Conversely if
the sets X; are connected for all j, then the union of their images, which is the entire wedge,
must be connected because all these images contain the base point. Similar statements hold for
arcwise connectedness and follow by inserting “arcwise” in front of “connected” at every step of
the argument.m

(b) Let ¢ : (X;,z;) = Vi (Xk, i) be the composite of the injection X; — [], X with the
quotient projection; by construction ; is base point preserving. Suppose that (Y,y) is some arbitrary
pointed space and we are given a sequence of base point preserving continuous maps Fj : (X;,z;) —
(Y,y). Prove that there is a unique base point preserving continuous mapping

F:Vp (Xk,zr) = (Y,y)

such that Fep; = Fj for all j.
SOLUTION.

To prove existence, first observe that there is a unique continuous map F: L, X% — Y such
that in;°F = Fj; for all j. This passes to a unique continuous map F on the quotient space
Vi (Xg,zx) because F' is constant on the equivalence classes associated to the quotient projection

P. This constructs the map we want; uniqueness follows because the conditions prescribe the
definition at every point of the wedge.m

(¢) In the infinite case one can carry out the set-theoretic construction as above but some care is
needed in defining the topology. Show that if each X is Hausdorff and one takes the so-called weak
topology whose closed subsets are generated by the family of subsets ¢,;(F') where F' is closed in X
for some 7, then [1] a function h from the wedge into some other space Y is continuous if and only if
each composite hoy; is continuous, [2] the existence and uniqueness theorem for mappings from the
wedge (in the previous portion of the exercise) generalizes to infinite wedges with the so-called weak
topologies.
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SOLUTION.

Strictly speaking, one should verify that the so-called weak topology is indeed a topology on
the wedge. We shall leave this to the reader.

To prove [1], note that ( = ) is trivial. For the reverse direction, we need to show that if £ is
closed in Y then h=!(E) is closed with respect to the so-called weak topology we have defined. The
subset in question is closed with respect to this topology if and only if h=(E) N ¢(X;) is closed
in ¢(X;) for all j, and since ¢,; maps its domain homeomorphically onto its image, the latter is
true if and only if ¢~1°h~!(E) is closed in X; for all j. But these conditions hold because each of
the maps ¢, °h is continuous. To prove [2], note first that there is a unique set-theoretic map, and
then use [1] to conclude that it is continuous.s

(d) Suppose that we are given an infinite wedge such that each summand is Hausdorff and contains
at least two points. Prove that the wedge with the so-called weak topology is not compact.

SOLUTION.

For each j let y; € X; be a point other than z;, and consider the set E' of all points y;. This
is a closed subset of the wedge because its intersection with each set (X)) is a one point subset
and hence closed. In fact, every subset of E is also closed by a similar argument (the intersections
with the summands are either empty or contain only one point), so F is a discrete closed subset of
the wedge. Compact spaces do not have infinite discrete closed subspaces, and therefore it follows
that the infinite wedge with the weak topology is not compact.m

Remark. |f each of the summands in (d) is compact Hausdorff, then there is a natural candidate
for a strong topology on a countably infinite wedge which makes the latter into a compact Hausdorff
space. In some cases this topology can be viewed more geometrically; for example, if each (X, z;)
is equal to (S1,1) and there are countably infinitely many of them, then the space one obtains is the
Hawaiian earring in R? given by the union of the circles defined by the equations

1 2
ok 22k

As usual, drawing a picture may be helpful. The &*® circle has center (1/2%, 0) and passes through the
origin; the y-axis is the tangent line to each circle at the origin.
SKETCHES OF VERIFICATIONS OF ASSERTIONS.

If we are given an infinite sequence of compact Hausdorff pointed spaces { (X,,z,) } we can
put a compact Hausdorff topology on their wedge as follows. Let W} be the wedge of the first k
spaces; then for each k there is a continuous map

0 \/ (Xn,20) —> Wi

(with the so-called weak topology on the wedge) that is the identity on the first £ summands and
collapses the remaining ones to the base point. These maps are in turn define a continuous function

q:V(Xnaxn) — HWk
n k

whose projection onto Wy, is gx. This mapping is continuous and 1-1; if its image is closed in the
(compact!) product topology, then this defines a compact Hausdorff topology on the infinite wedge
vn (Xna xn) .
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Here is one way of verifying that the image is closed. For each k let ¢ : W), — Wy _1 be the
map that is the identity on the first (kK — 1) summands and collapses the last one to a point. Then
we may define a continuous map C on [[,-; Wi by first projecting onto the product [], o, Wi
(forget the first factor) and then forming the map [],~, Wi. The image of q turns out to be the
set of all points x in the product such that C'(x) = x. Since the product is Hausdorff the image set
is closed in the product and thus compact.

A comment about the compactness of the Hawaiian earring F might be useful. Let Fj be the
union of the circles of radius 277 that are contained in E, where j < k, together with the closed
disk bounded by the circle of radius 2~ *+1) in E. Then F}, is certainly closed and compact. Since
FE is the intersection of all the sets Fj, it follows that F is also closed and compact.m

6. Let {A, | @ € A} be a family of topological spaces, and let X =[] A,. Formulate
and prove necessary and sufficient conditions on A and the sets A, for the space X to be second
countable, separable or Lindelof.

SOLUTION.

For each property P given in the exercise, the space X has property P if and only if each
A, does and there are only finitely many « for which A, is nonempty. The verifications for the
separate cases are different and will be given in reverse sequence.

The Lindelof property.

The proof in this case is the same as the proof we gave for compactness in an earlier exercise
with “countable” replacing “finite” throughout.m
Separability.

(=) Let D be the countable dense subset. Each A, must contain some point of D, and
by construction this point is not contained in any of the remaining sets Ag. Thus we have a 1-1
function from A to D sending « to a point d(a) € A, N D. This implies that the cardinality of A
is at most |D| < Rp.m

(<) If D, is a dense subset of A, and A is countable, then U, D, is a countable dense
subset of A.m

Second countability.

(=) Since a subspace of a second countable space is second countable, each A, must be
second countable. Since the latter condition implies both separability and the Lindel6f property,
the preceding arguments show that only countably many summands can be nontrivial.

(<) If Aiscountable and B, is a countable base for A, then U, B, determines a countable
base for X (work out the details!).n
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