Take home assignment 1

Due Wednesday, May 4, 2005

- 1. Let U be an open subset of \mathbb{R}^n , let \mathcal{A} be a smooth atlas for U containing the standard chart (U, J), were J is the identity map on U, and let (U, h) be an arbitrary smooth chart in \mathcal{A} .
 - (i) How can one express the transition map " $J^{-1}h$ " in terms of h?
 - (ii) Why does this imply that h is smooth?
- **2.** Suppose that $f: M \to M'$ and $g: N \to N'$ are smooth maps. Prove that the map $f \times g: M \times N \to M' \times N'$ defined by $f \times g(x,y) = (f(x), g(y))$ is smooth. [Hint Let p_1 and p_2 be the projections from $M \times N$ to M and N respectively, and similarly let q_1 and q_2 be the projections from $M' \times N'$ to M' and N' respectively. Consider the composites of $f \times g$ with q_1 and q_2 .]
- 3. Suppose that M is a topological 2-manifold. Prove that for each point $x \in M$ there is a neighborhood base $\{U_{\alpha}\}$ such that for each α we have
 - (i) The set $U_{\alpha} \{x\}$ is connected, and the fundamental group of $U_{\alpha} \{x\}$ with respect to some (in fact any) basepoint is nontrivial.
 - (ii) If $U_{\beta} \subset U_{\alpha}$ and $y \in U_{\beta}$ is different from x, then the includion of $U_{\beta} \{x\}$ in $U_{\alpha} \{x\}$ gives rise to an isomorphism of fundamental groups.
- **4.** Suppose that M is a topological n-manifold for some $n \geq 3$.
- (i) Prove that for each point $x \in M$ there is a neighborhood base $\{U_{\alpha}\}$ such that U_{α} is simply connected.
 - (ii) Explain why the conditions

M is a topological 1-manifold,

M is a topological 2-manifold,

M is a topological 3-manifold,

are mutually exclusive without using Brouwer's Invariance of Domain or Dimension theorems.