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FIGURES FOR ADVANCED ALGEBRAIC TOPOLOGY  
 

LECTURE NOTES  

 
(  Lecture notes link:   http://math.ucr.edu/~res/math246A–2012/advancednotes2012.pdf )  

 

 

I  :   Foundational and geometric background 
 

 

 I . 0 : Review 
 
 
Barycentric coordinates.   In the drawing below, each of the points  P, Q, R  lies in the 

plane determined by  P1, P2, and  P3, and consequently each can be written as a linear 

combination  w1P1 + w2P2 + w3P3,  where w1 + w2 + w3  =  1.  For the point  P, the 

barycentric coordinates w i are all positive, while for the point  R  the barycentric 

coordinates are such that  w1  =  0  but the other two are positive, and for the point  Q  

the barycentric coordinates are such that w1 is negative but the other two are positive.  
 
 

 
 

FIGURE I.0.1 
 

(Source:  http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Barycentric-
Coordinates/Barycentric-Coordinates.html ) 

 

Examples of points for which w2 is positive but the remaining coordinates are negative 
can also be constructed using this picture; for example, if one takes the midpoint M of 

the segment [P 1P 3],  then the point  S  =  2 P2 – M  has this property (geometrically, P2 

is the midpoint of the segment joining M and S).  
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Illustration of a 2 – simplex .   We shall use a modified version of Figure 1; the points 

of the 2 – simplex with vertices P1, P2, and P3 consists of the triangle determined by 

these points and the points which lie inside this triangle (in the usual intuitive sense of 

the word). 
 

 
 

FIGURE I.0.2 
 

In this picture the points P and R lie on the simplex P1P2 P3 because their barycentric 
coordinates are all nonnegative, but the point Q does not because one of its barycentric 

coordinates is negative. 
 

Note that the (proper) faces of this simplex are the closed segments P1P2, P2P3, and 

P1P3 joining pairs of vertices as well as the three vertices themselves (and possibly the 

empty set if we want to talk about an empty face with no vertices). 
 

Simplicial decompositions.   It is useful to look at a few spaces given as unions of 2 – 
simplices, some of which determine simplicial complexes in the sense of the notes and 

others that do not. 
 

  
FIGURE I.0.3 

 

(Source: http://mathworld.wolfram.com/SimplicialComplex.html ) 
 

In the example above the intersection of the 2 – simplices is not a common face.  On the 
other hand, we can split the two simplices into smaller pieces such that we do have a 

simplicial decomposition. 
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FIGURE I.0.4 

 

Here are two more examples; in the second case the simplices determine a simplicial 
complex and in the first they do not.  As in the preceding example, one can subdivide the 

simplices in the first example to obtain a simplicial decomposition.  
   
 

 

 

(Source: http://planning.cs.uiuc.edu/node274.html ) 
 

  
FIGURE I.0.5 

 

 
Triangulations.   One cam split the annulus bounded by two circles into four isometric 

pieces as in the drawing on the next page.   
 

 
 

FIGURE I.0.6 
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Each of the four pieces is homeomorphic to a solid rectangle.  Since a solid rectangle 

has a simplicial decomposition into two 2 – simplices, one can use such a 

decomposition to form a triangulation of the solid annulus. 
 

  
FIGURE I.0.7 

 

A closely related way of triangulating the annulus is suggested by the figure below: 
 

 
 

FIGURE I.0.8 
 

Similarly, many familiar closed polygonal regions can be triangulated fairly easily.  Here 

is an example for a solid hexagon. 
 

 
 

FIGURE I.0.9 
 

Triangulations of prisms.   The drawings below illustrate the standard decomposition 

of a 3 – dimensional triangular prism. 
 

 
 

FIGURE I.0.10 
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If we take x0, x1, and x2 to be the vertices of the bottom triangle and y0, y1, and y2 to 
be the vertices of the top triangle, then the decomposition is given as follows: 

 

 
 

 FIGURE I.0.11 
 

 

 

 I . 1 : Ordered simplicial chains 
 
 

Star shaped complexes.   The following drawing of an eight pointed star depicts a 
simplicial complex which is star shaped with respect to the vertex in the center.  Note 
that the complex is not star shaped with respect to any of the other vertices.  In contrast, 
a simplex with the standard face decomposition is star shaped with respect to each of its 
vertices.  Two 2 – simplices in the plane with a common edge are an example of a 
complex which is star shaped with respect to exactly two vertices (and not star shaped 
with respect to the other two).   

 

 
 

FIGURE I.1.1 
 

 (Source:   http://www.ezartsncrafts.com/templates/8star.gif) 
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 I . 2 : Subdivisions 
 
 

Simple subdivisions 1.   The drawing below depicts a subdivision of a 1 – simplex 

given by a closed interval in the real line into three 1 – simplices (which are just 

subintervals of the original interval).   
 

 
 

FIGURE I.2.1 
 

Similarly, every partition of an interval determines a subdivision. 
 

Simple subdivisions 2.   The drawing below depicts a subdivision of a 2 – simplex into 

two 2 – simplices.   
 

 
 

FIGURE I.2.2 
 

If w   =   ay + (1 – a)z where 0  <  a  <  1 and  px + qy + rz is a point on the simplex 

xyz (so that p, q, r  ≥  0 and px + qy + rz  =  1), then the point px + qy + rz lies on the 

simplex xwz if and only if p  =  1 or p  <  1  and  q  ≥  a(1 – p) ,  and  px + qy + rz lies 

on the simplex xwy if and only if p  =  1 or p  <  1  and  q  ≤  a(1 – p) .  The intersection 

of these simplices is the face with vertices x and w.  Some other simple subdivisions of 

a 2 – simplex are illustrated below. 
 

 
 

FIGURE I.2.3 
 
A nonexample.   In general, if we given two simplicial decompositions, then neither is a 
subdivision of the other.  For example, neither of the two simplicial decompositions of a 

rectangle described below is a subdivision of the other. 
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FIGURE I.2.4 
 

On the other hand, there is a decomposition which is a subdivision of both the 

decompositions shown above. 
 

 
 

FIGURE I.2.5 
 

More generally, if we are given two simplicial decompositions K and L of a polyhedron 

P then one can always construct a third decomposition which is a subdivision of both K 

and L.  This follows from results in the book,  Elementary Differential Topology,  by J. 

R. Munkres (see the notes for a more complete citation). 
 
Here is a slightly more complicated pair of examples: 
 

 
 

FIGURE I.2.6 
 
Examples from the previous section.    Here are illustrations to indicate how one can 

subdivide the nonsimplicial decompositions from the figures in Section I.2 to obtain 
simplicial decompositions. 
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FIGURE I.2.7 
 

 
Barycentric subdivisions.   Here is a drawing to illustrate the barycentric subdivision of 

a 2 – simplex.     
 

   
 

FIGURE I.2.8 
 

The vertices of a 2 – simplex in this subdivision are given by a, b and c, where a is a 

vertex of the original simplex, b is the midpoint of an edge which has a as a vertex, and 

c is the barycenter of the 2 – simplex itself.  In this example, the diameters of the 2 – 

simplices in the barycentric subdivision are 2/3 the diameter of the original simplex. 
 

The drawing below illustrates the barycentric subdivision of a solid rectangular region 

with its basic decomposition into two 2 – simplices along a diagonal.  Observe that the 

decompositions of the top and bottom 2 – simplices are just the barycentric subdivisions 
of the latter, and the decomposition of the edge where they intersect is just the 
barycentric subdivision of that edge. 
 

 
 

FIGURE I.2.9 

The next drawing illustrates the second barycentric subdivision of a 2 – simplex 

(however, the locations of several vertices are slightly inaccurate). 
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FIGURE I.2.10 
 

This decomposition of the 2 – simplex has 25 vertices, 60 edges and 36 simplices that 

are 2 – dimensional.  Incidentally, in the third barycentric subdivision there are 121 

vertices, 336 edges and  216 simplices that are 2 – dimensional.   

 
Final comment on barycentric subdivisions.   In the proof that the barycentric 
subdivision actually defines a simplicial decomposition of a simplex, the simplex 
containing a given point is determined by putting the barycentric coordinates in linear 
order.  The drawing below indicates the correspondence between inequality chains and 

2 – simplices in the barycentric subdivision of a 2 – simplex. 

 

 
 

FIGURE I.2.11 
 

 

 I . 3 : Abstract  cell complexes 
 
 

The Königsberg Bridge Network.    In the 18th century, the city of Königsberg (now 
known as Kaliningrad, on the Baltic Sea in a small sliver of Russian territory sandwiched 
between Poland and Lithuania) had seven bridges across the Pregel (or Pregolya) River, 
which runs through the city.  
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(Source:  http://news.bbc.co.uk/2/hi/europe/country_profiles/6177003.stm ) 
 

The original question was to find a path through the city which crosses over each of 
these seven bridges exactly once, and Euler reduced the problem to a question about an 

edge – vertex graph; specifically, one first eliminates all features but the land masses 
and the bridges connecting them, and then one represents each land mass with a vertex 
and each bridge with an edge whose endpoints are the two land masses it connects. 
 

            
 
 

(Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg) 

 

In 1736 Euler proved that it was impossible to find a path of the desired type, and a 

description of his approach in modern terminology appears in the online 205B notes. 
 

Cell attachments and NDR neighborhoods.  The drawing below represents a space X 

obtained by taking another space A and attaching a single 2 – cell.  The subspace A is 
colored in a peach – like shade of orange, and the blue and yellow regions correspond 
to the cell.  In this case A is a strong deformation retract of the open set U given by A 
together with the regions colored in medium and light blue with the frontier points on the 
boundary circle removed.  Furthermore, U of has a subneighborhood V (namely, the 
union of A and the region colored in medium blue) such (1) that the closure of V is 
contained in U, and (2) A is a strong deformation retract of both V and its closure.   Of 
course, the details are in the notes. 
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More generally, if A is a subset of X such that A is a strong deformation retract of some 
open neighborhood U of A in X, then one frequently says that A is a neighborhood 
deformation retract (NDR) in X.   An extremely large (probably dominant) share of the 
subspaces studied in topology and geometry have this propery (in particular, this is true 
for subcomplexes of a simplicial complex, smooth submanifolds of a smooth manifold, 

and subsets of Euclidean space defined by finitely many polynomial equations and/or 
inequalities), and their properties are discussed further in the following reference: 
 

N. E. Steenrod,  A convenient category of topological spaces.  Michigan 

Mathematical Journal  14 (1967),  pp. 133 – 152. 
 
 
 

 I . 4 : The Homotopy Extension Property 
 
 

The standard models.  The crucial point in the proof of the Homotopy Extension 

Property is that the inclusion of D 

n
 × [0,1]  ∪∪∪∪  S 

n – 1 
× [0,1]  in the cylinder  D 

n
× [0,1]  

is a retraction; an illustration of this retraction when  n  =  1 is given below:  

 

 
 

In this illustration, the retraction sends the points marked in black into the points marked 
in red on the corresponding lines.  The explicit definition of the retraction has two cases, 
depending upon whether or not the original point lie in the pink colored region or the 
green colored region(s). 
  

One can obtain the case n  =  2 from the one – dimensional case by taking solids and 

surfaces of revolution about the t – axis, and likewise in higher dimensions one can view 
the drawing as a planar cross section of the general construction. 

 

 

I . 6 : Cones and suspensions 
 
 

Cones.   In the simplest cases, Proposition 1 implies that the topological cones on 
spaces are canonically homeomorphic to the standard cones of elementary geometry.  

For example, if X is the circle S
1
, then Proposition 1 shows that the cone on X is 
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homeomorphic to the lateral (or top) surface of the cone illustrated below, and if X is the 

disk D 

2
, then Proposition 1 shows that the cone on X is homeomorphic to the solid cone. 

 

 
 

FIGURE I.6.1 
 

In this drawing, the original space is the base of the cone and the point at the top 
corresponds to the equivalence class of the subspace which is collapsed to a point. 

  
Suspensions.   The drawing below illustrates the suspension of the circle.  Note that the 

closure of the piece above the xy – plane is merely the cone on the circle, while the 

closure of the piece below the xy – plane is the mirror image of that cone with respect to 

reflection about the xy – plane.   Frequently these two subspaces are denoted by the 

symbols like  C ++++ (X)  and  C –––– (X). 
 

 
 

(See the Wikipedia citation in http://www.answers.com/topic/suspension )     

 

FIGURE I.6.2 
 

In this drawing, the original space is outlined in blue, and the collapsed end points (the 
“poles”) are both in deep orange. 
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I I  :   Construction and uniqueness of singular homology 
 

 

 I I . 1 : Definitions and basic properties 
 
 
Approximating spaces by polyhedra.    If X is a compact subset of the plane, then X is 
an intersection of subspaces which are homeomorphic to polyhedra.  The drawing below 
illustrates this for a subspace called the Hawaiian earring.  In coordinates this space is 

the union of the circles tangent to the origin with centers (1////2k, 0) where k runs through 
all nonnegative integers. 
 

 
 

In the drawing, the Hawaiian earring is the space at the left, and it is the intersection of 

the spaces Xk, where Xk is formed by adding the disk centered at (1////2k, 0).   Note that 
each of these sets Xk is homeomorphic to a polyhedron.  The Čech homology theory 

described in Section III.5  of these notes is related to such approximations. 
 

In contrast, singular homology theory is based upon the idea that every open subset 
of the plane is an increasing union of polyhedra.  For example, in the drawings below 
consider the region U bounded by the red ellipse.   For each k, let Pk be the polyhedron 
which is a union of solid squares which are contained in U and whose vertices are 
rational numbers whose denominators are divisible by 2k.  Then standard results in 
measure theory imply that U is the union of the sets Pk.  The drawings below show three 
successive approximations to U by such configurations of solid squares and highlight the 
solid squares that are added at each step.   
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For more general spaces, it is useful to think of singular homology as an approach to 
studying the homology of a space by trying to construct polyhedral which somehow 
approximate the original space.   The results of  205B  show that covering space theory 
does not work well for some exotic examples of spaces, and the same is true for singular 
homology.  However,  there is a large class of spaces (including topological manifolds) 
for which singular homology theory gives the “right” homology groups.    

  
 I I . 3 : Excision and Mayer – Vietoris sequences 

 
 
Excision for polyhedral in simplicial homology.   Here is a drawing: 
 

 
 

The inclusion map of pairs induces isomorphisms in simplicial homology.  In this drawing 

K2 is striped, K1 is colored, and their intersection is both. 
 
 
Excision in singular homology.   Here is a drawing: 
  

 
 

In this case the inclusion map of pairs induces isomorphisms in singular homology; the 

excised subset  U  corresponds to the smallest square in the middle of X. 
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Common feature.  In both cases we have continuous mappings of pairs  f  from (Y, B) 

to  (X, A)  which maps  Y – B  homemorphically to  X – A (such a map is often called a 
relative homeomorphism).   Many, but definitely not all, relative homeomorphisms 
induce isomorphisms in singular homology. 
   
How to find counterexamples as described in the preceding statement.   If relative 
homeomorphisms always induced isomorphisms in singular homology when the subsets 

A  and  B are closed in  X  and Y  respectively,  then one would have Mayer – Vietoris 
exact sequences for spaces given as the union of closed subpsaces (this can be derived 
as in the first chapter of Eilenberg and Steenrod),  but later in the notes we shall prove 
that this is not the case.     

  
 I I . 5 : Polyhedral generation, direct limits and uniqueness 

 
 

Additional examples of Hatcher  ∆∆∆∆ – complexes.    The right hand figure represents a 

complex obtained from the  2 – simplex on the left by identifying two side edges. 
 

 
 

A second example can be constructed from this by identifying the vertex at the bottom 
with the (unique) vertex at the top.  The original example has two vertices, two edges 
and one face, and the second example has one vertex, two edges and one face.   As 
indicated on page 54 of the notes, an exercise in Hatcher implies that the second 
barycentric subdivisions of both complexes are homeomorphic to polyhedra.  
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V  :   Cohomology and Differential Forms 
 

 

 V . 4 : De Rham’s Theorem 
 
 

The following drawing is designed to illustrate the decomposition of an open set U in 

Theorem  2 of the notes.  We are given a presentation of the open set as a union of 

compact subsets Ki , each of which is contained in the interior of the next one in the 

sequence.  The sets Ai , which correspond to the colored bands, are obtained by 

removing the interior of Ki – 1 from Ki 
 

 
 

The sets Vi are open neighborhoods of the sets Ai , and they are constructed so that Vi 

and Vj have points in common only if | i – j| is at most 2.  In the proof of Theorem 2 

one uses these sets to find smaller open neighborhoods Wi  of  Ai  such that  Wi is 

contained in Vi  and  Wi  is a finite union of open disks.  Thus the families  
 

{W0, W3, W6, … }     {W1, W4, W7, …}     {W2, W5, W8, …} 
 

consist of pairwise disjoint open subsets, each of which is a finite union of convex open 

subsets.   We know that de Rham’s Theorem holds for each Wi by previous results in 

the notes, and Proposition 3 implies that the theorem also holds for the unions G0, G1, 

G2 of the open sets in each of the three families.    Theorem 4 gives the final steps to 

showing that de Rham’s Theorem is true for finite unions of these sets  Gi and hence is 

true for the arbitrary open subset U that we are considering. 
 
 
 


