Drawing for the Mayer – Vietoris property in de Rham cohomology

The property in question is established on page 137 of the main course notes: http://math.ucr.edu/~res/math246A-2012/advancednotes2012.pdf

Let **U** and **V** denote open subsets in \mathbb{R}^n . The key insight in the proof of the Mayer – Vietoris Property is to use a smooth partition of unity $\{g_U, g_V\}$ for the standard open covering $\{U, V\}$ of the open set $U \cup V$. In the drawing below, U_0 and V_0 are the sets on which the functions g_U and g_V are positive.

Given a differential form ω_v , the form $\omega_v = g_U \cdot \omega$ can be extended to all of V by setting it equal to zero on V – Closure(U₀) because ω_U is zero by construction on the overlap

$U \cap (V - Closure(U_0))$

and similarly the form $\omega_U = g_V \cdot \omega$ can be extended to all of **U** by setting it equal to zero on the complement **U** - **Closure**(**V**₀) because ω_V is zero by construction on the overlap

$(U - Closure(V_0)) \cap V.$

It follows that the differential form

$(\omega_V | U \cap V) + (\omega_U | U \cap V) = g_U \cdot \omega + g_V \cdot \omega = (g_U + g_V) \cdot \omega$

is merely the original form ω (since $\{g_U, g_V\}$ is a partition of unity).